Оля пытается отправить СМС подруге из леса. Связь в лесу плохая, поэтому при каждой отдельной попытке СМС может быть отправлено с вероятностью 0,1. Телефон делает последовательные и независимые попытки до тех пор, пока СМС не будет отправлено. Какова вероятность события:
а) «СМС будет отправлено с третьей попытки»;
б) «СМС будет отправлено не позже, чем с пятой попытки».
2) 16 км = 16 000 м - расстояние между А и В
3) 16 000 - 800 = 15 200 (м) - пройдут пешеходы вместе, пока между ними не останется расстояние 800 м
4) 15200: 160 = 95 (мин)=1 ч 35 мин - время движения пешеходов до момента, когда расстояние между ними останется 800 м
5) 16 000:160 = 100 (мин)=1 ч 40 мин - время до встречи пешеходов
6) 9 ч + 1 ч 35 мин = 10 ч 35 мин - столько времени будет на часах, когда между пешеходами останется 800 м
7) 9 ч + 1 ч 40 мин = 10 ч 40 мин - время встречи пешеходов
Итак, в течение времени с 10:36 до 10:40 расстояние между пешеходами будет менее 800 м.
Пусть вторая труба заполняет бассейн за у часов, тогда скорость заполнения бассейна второй трубой (1/у) .
Пусть третья труба заполняет бассейн за z часов, тогда скорость заполнения бассейна третьей трубой (1/z) .
Пусть четвертая труба заполняет бассейн за u часов, тогда скорость заполнения бассейна второй трубой (1/u).
Скорость заполнения бассейна четырьмя трубами:
(1/х)+(1/у)+(1/z)+(1/u)
Время заполнения четырьмя трубами
1/((1/х)+(1/у)+(1/z)+(1/u)) равно 4 часа
или
(1/х)+(1/у)+(1/z)+(1/u)=1/4
Первая, вторая и четвертая трубы заполняют бассейн за 6 часов.
1/((1/х)+(1/у)+(1/u)) = 6
или
(1/х)+(1/у)+(1/u)=1/6
Вторая, третья и четвертая – за 5 часов.
1/((1/у)+(1/z)+(1/u))=5
или
(1/у)+(1/z)+(1/u)=1/5
Получаем систему трех уравнений:
{(1/х)+(1/у)+(1/z)+(1/u)=1/4
{(1/х)+(1/у)+(1/u)=1/6
{(1/у)+(1/z)+(1/u)=1/5
из первого и второго уравнений
1/z=(1/4)–(1/6)=1/12
из первого и третьего уравнений
1/x=(1/4)–(1/5)=1/20
Находим сумму
(1/x)+(1/z)=(1/20)+(1/12)=2/15
t=1/((1/x)+(1/z))
t=1/(2/15)=15/2=7,5 часов.
О т в е т. 7,5 часов.