Пусть грузоподъемность грузовиков: ф, m и а, при этом ф < m < а. Из условия, общий объем (масса) груза равняется 10ф. Из этого получаем, что 10ф / (m+а) < 5. Условие о том, что недогрузка запрещена, можно трактовать как то, что 10ф / (m+а) — это целое число. Однако, даже из этого мы получим всего лишь набор уравнений: 5ф = 2(m+а) 10ф = m+а 5ф = m+а 10ф = m+а все данные уравнения имеют решения в целых числах ответ (от 1 до 4 перевозок) Еще можно решить методом подбора,но там очень много нужно подбирать
5^(x-2) = 5^0 2^(x² -3x +8) = 2^6
x-2 = 0 x² -3x +8 = 6
x = 2 x² -3x +2 = 0
2) 3·4^x =48 x = 1 и х = 2
4^x = 16 6)7^(2x-8)·7^(x+7) = 0
4^x = 4² нет решений
x=2 7)(0,2)^x ≤ 25·5√5
3)3^x=27·3√9 5^-x ≤ 5²·5·5^1/2
3^x = 3³·3·3 5^-x ≤5^3,5
3^x = 3^5 -x ≤ 3,5
x = 5 x ≥ -3,5
4)3^x + 3^(x +1) = 4 8)(1/2)^-x + 2^(3 +x) ≤9
3^x(1 +3) = 4 2^x +2^(3 +x) ≤ 9
3^x·4 = 4 2^x(1 +2^3) ≤ 9 | :9
3^x = 1 2^x ≤ 1
x = 0 2^x ≤2^0
x≤ 0
Из условия, общий объем (масса) груза равняется 10ф.
Из этого получаем, что 10ф / (m+а) < 5.
Условие о том, что недогрузка запрещена, можно трактовать как то, что 10ф / (m+а) — это целое число.
Однако, даже из этого мы получим всего лишь набор уравнений:
5ф = 2(m+а)
10ф = m+а
5ф = m+а
10ф = m+а
все данные уравнения имеют решения в целых числах
ответ (от 1 до 4 перевозок)
Еще можно решить методом подбора,но там очень много нужно подбирать