Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
1) Найдем длины сторон участка прямоугольной формы.
Пусть х м - длина одной стороны, тогда
(х-10) м - длина другой стороны этого участка.
ОДЗ: x>0
По условию его площадь равна 6 а, т.е. 600 м², получаем уравнение:
х·(х-10) = 600
х² - 10х - 600 = 0
D = 100 - 4·1·600 = 100+2400 = 2500 = 50²
x₁= - 20<0 не удовлетворяет ОДЗ
х₂ = 30 м - длина одной стороны,
30-10=20 м - длина другой стороны этого участка.
2) Найдем периметр участка.
2· (30+20) = 2·50 = 100 м
3) Длина изгороди равна 90 м, а периметр равен 100 м.
90 < 100
ответ: НЕ хватит 90 м изгороди для данного участка.
13 деталей
Объяснение:
Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.