Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Площадь области, которую нужно засыпать песком = площадь квадрата всей площадки – площадь квадрата под качели.
Sквадрата = а^2, где а — сторона квадрата.
S квадрата всей площадки = (12.4м)^2
S квадрата качелей = (2.4м)^2
Воспользуемся формулой разности квадратов: a^2 – b^2 = (a – b)(a + b)
S искомой области = (12.4м)^2 – (2.4м)^2 = (12.4м – 2.4м)(12.4м + 2.4м) = 10м * 14.8м = 148 м^2
Или "вручную", без формулы:
12.4^2 – 2.4^2 = (124/10)^2 – (24/10)^2 = (62/5)^2 – (12/5)^2 = (62^2)/(5^2) – (12^2)/(5^2) = (62^2 – 12^2) / 5^2 = (3844 – 144) / 25 = 3700 / 25 = (:5) = 740 / 5 = (:5) = 148
4sina*sin(п/3+a)*sin(п/3-a)=sin3a
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Рассмотрим правую часть: sin3a= sina – 4*sin³ (a)) = sina*( 1 –4*sin² (a))
Следовательно, выражения в левой и правой частях тождественно равны.