попробую росписать, как найти точки пересечения графика с осями. Расмотрим ось икс: если график фуекции пересекает икс, значит икс будет равно некоторому значению, а игрек равно нолю. Теперь подставим в наш график 0=4х-4 или 4х-4=0 4х=0+4 4х=4 х=4:4 х=1 Получается точка с координатами (1; 0)
Рассмотрим ось игрек: если график функции пересекает игрек, значит будет теперь наоборот, игрек будет равно некоторому значению, а икс равно нолю. Подставляем: у=4*0-4 у=0-4 у=-4 Иммем еще одну точку (0; -4) Нарисуй этот график на онлайне и ты увидишь что график функции пересекает именно в этих точках оси координат.
По формуле вс угла:
4\sin x-16\cos x= \sqrt{4^2+4^4}\sin(x-\arcsin \frac{16}{ \sqrt{4^2+4^4} } )=4 \sqrt{17} \sin(x-\arcsin\frac{4}{\sqrt{17} })4sinx−16cosx=
4
2
+4
4
sin(x−arcsin
4
2
+4
4
16
)=4
17
sin(x−arcsin
17
4
)
Поскольку синус принимает свои значения - [-1;1], то
\begin{lgathered}-1 \leq \sin(x-\arcsin\frac{4}{\sqrt{17} } )\leq 1\\ \\ -4 \sqrt{17} \leq \sin(x-\arcsin\frac{4}{\sqrt{17} }) \leq 4 \sqrt{17}\end{lgathered}
−1≤sin(x−arcsin
17
4
)≤1
−4
17
≤sin(x−arcsin
17
4
)≤4
17
Наибольшее - 4 \sqrt{17}4
17
и наименьшее - (-4 \sqrt{17} )(−4
17
)
попробую росписать, как найти точки пересечения графика с осями.
Расмотрим ось икс:
если график фуекции пересекает икс, значит икс будет равно некоторому значению, а игрек равно нолю. Теперь подставим в наш график
0=4х-4
или 4х-4=0
4х=0+4
4х=4
х=4:4
х=1
Получается точка с координатами (1; 0)
Рассмотрим ось игрек:
если график функции пересекает игрек, значит будет теперь наоборот, игрек будет равно некоторому значению, а икс равно нолю.
Подставляем:
у=4*0-4
у=0-4
у=-4
Иммем еще одну точку (0; -4)
Нарисуй этот график на онлайне и ты увидишь что график функции пересекает именно в этих точках оси координат.