В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
lilya14kiev
lilya14kiev
25.01.2020 16:46 •  Алгебра

ответь (не производя построения), в каком координатном угле расположена точка А(;1), если а>0.

ответ:
точка А(а;1), если а>0, находится

Показать ответ
Ответ:
neznayka1900
neznayka1900
22.05.2023 05:25

Чтобы выполнить сложение или вычитание алгебраических дробей с одинаковыми знаменателями, надо найти сумму или разность числителей, а знаменатель оставить без изменений.

Пример 1. Выполните сложение алгебраических дробей:

а)   a + 3  +  a - 3         б)   2b - 1  +  b + 4

b b 2 2

Решение: складываем числители дробей и выполняем приведение подобных членов (если они есть):

а)   a + 3  +  a - 3  =  (a + 3) + (a - 3)  =  a + 3 + a - 3  =  2a

b b b b b

б)   2b - 1  +  b + 4  =  (2b - 1) + (b + 4)  =  2b - 1 + b + 4  =  3b + 3

2 2 2 2 2

Пример 2. Выполните вычитание алгебраических дробей:

а)   x + 5  -  5x         б)   a + b  -  a + 4

3 3 a - 5 a - 5

Решение: вычитаем из числителя первой дроби числитель второй дроби и выполняем приведение подобных членов (если они есть):

а)   x + 5  -  5x  =  x + 5 - 5x  =  5 - 4x

3 3 3 3

б)   a + b  -  a + 4  =  (a + b) - (a + 4)  =  a + b - a - 4  =  b - 4

a - 5 a - 5 a - 5 a - 5 a - 5

Сложение и вычитание алгебраических дробей с одинаковыми знаменателями в виде общих формул:

a  +  b   =   a + b      и      a  -  b   =   a - b           (c≠0)

c c c c c c

Если дроби имеют знаменатели, состоящие из противоположных выражений, то есть выражений, отличающихся только знаком, надо тождественно преобразовать одну из дробей, чтобы привести их к общему знаменателю. Преобразование выполняется в соответствии с правилами знаков:

a  =  -a

b -b

Данное преобразование можно рассматривать как умножение числителя и знаменателя дроби на -1. Следовательно, если числитель и знаменатель алгебраической дроби заменить на противоположные выражения, то получится дробь, равная данной. Полученную дробь можно переписать, поставив один из минусов перед дробью:

a  =  -a  = - a  = - -a

b -b -b b

Также, любую отрицательную дробь можно сделать положительной, перенеся минус, стоящий перед дробью, в числитель или знаменатель:

- a  =  -a  =  a

b b -b

Пример 1. Найдите сумму дробей:

5a  +  3a

b - c c - b

Решение: чтобы выполнить сложение, поменяем знаки перед второй дробью и в её знаменателе на противоположные:

5a  +  3a  =  5a  -  3a  =  5a  -  3a  =  2a

b - c c - b b - c -(c - b) b - c b - c b - c

Пример 2. Найдите разность дробей:

n + 5  -  2n

n2 - m m - n2

Решение: чтобы выполнить вычитание, перенесём знак минус, стоящий перед второй дробью, в её знаменатель:

n + 5  -  2n  =  n + 5  +  2n  =  n + 5  +  2n  =  3n + 5

n2 - m m - n2 n2 - m -(m - n2) n2 - m n2 - m n2 - m

Сложение и вычитание с разными знаменателями

Чтобы найти сумму или разность алгебраических дробей с разными знаменателями, надо:

найти общий знаменатель,

привести алгебраические дроби к общему знаменателю,

выполнить сложение или вычитание,

сократить полученную дробь, если это возможно.

Пример 1. Выполните сложение дробей:

2a  +  b

a + b a - b

Решение: находим общий знаменатель. Он будет равен произведению знаменателей данных дробей:

(a + b)(a - b)

Как находить общий знаменатель, Вы можете узнать на странице Приведение алгебраических дробей к общему знаменателю. Далее умножаем числитель каждой дроби на дополнительный множитель:

2a(a - b) = 2a2 - 2ab

b(a + b) = ab + b2

Общий знаменатель можно свернуть в разность квадратов. В итоге у нас получится:

2a  +  b  =  2a2 - 2ab  +  ab + b2  =  

a + b a - b a2 - b2 a2 - b2

=  2a2 - 2ab + ab + b2  =  2a2 - ab + b2

a2 - b2 a2 - b2

Пример 2. Выполните вычитание дробей:

b  -  2

a2 - ab a - b

Решение: разложим знаменатель первой дроби на множители:

a2 - ab = a(a - b)

Так как данное выражение делится на знаменатель второй дроби, то возьмём его в качестве общего знаменателя. Значит, теперь нам надо умножить числитель второй дроби на дополнительный множитель a:

2 · a = 2a

Получаем:

b  -  2  =  b  -  2a  =  b - 2a

a2 - ab a - b a(a - b) a(a - b) a(a - b)

Пример 3. Выполните сложение:

x +  x2

1 - x

Решение: запишем первое слагаемое в виде дроби и приведём её к знаменателю 1 - x:

x +  x2  =  x  +  x2  =  x(1 - x)  +  x2  =  x - x2  +  x2

1 - x 1 1 - x 1 - x 1 - x 1 - x 1 - x

Теперь можно выполнить сложение дробей с одинаковыми знаменателями:

x - x2  +  x2  =  x - x2 + x2  =  x

1 - x 1 - x 1 - x 1 - x

Точно также можно выполнять сложение и вычитание алгебраических дробей с любыми многочленами.

Объяснение:

0,0(0 оценок)
Ответ:
enotowi4enot
enotowi4enot
09.02.2022 09:35

Введем подстановку t = cos (3x), где |t| меньше или равен 1, т.к. функция cosx является ограниченной снизу -1, сверху +1.

Тогда исходное уравнение перепишется следующим образом:

2t^2 - 5t - 3 = 0.

Сейчас перед нами обыкновенное квадратное уравнение. Находим дискриминант и корни, если они будут.

D = b^2 - 4ac,

D = 25 + 24 = 49,

D>0 и значит уравнение имеет два корня.

t1 = (-b - корень из D) / (2a),

t1 = (5 - 7) / 4 = -1/2;

t2 = (-b + корень из D) / (2a),

t1 = (5 + 7) / 4 = 3;

Вернемся к подстановке t = cos (3x): 

1) cos (3x) = -1/2,

3x = ± (2pi) / 3 + 2pi*k, где k - целое число;

x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.

2) cos (3x) ≠ 3, т.к. |t| ≤ 1.

ответ: x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота