Необходимо начертить единичную окружность и заставить точку "бегать" по окружности: 3П - это 1,5 круга, соответствует углу 180 градусам. Точка будет иметь координаты (-1,0). По определению sin и cos это и есть их значения: sin3П=0, cos3П=-1. Аналогично: sin 4п=0, сos4П =1 sin3,5п=1, сos3,5П=0; sin5/2П=1, cos 5/2П=0 sinПк=0 сosПк=1 (если к -четное ) и cosПк =-1 если к- нечетное число (2к+1) - это формула нечетного числа, к примеру 3, 5, 7, 9 и т.д. Следовательно, sin(2к+1)П=0, cos(2к+1)П =-1..
Свойства функции у = х²
1. Область определения D(y) = R.
2. Множество значений E(y) = [0; +∞).
3. Наибольшего значения нет, наименьшее значение у = 0 функция принимает в точке х = 0.
4. График функции пересекает оси координат в точке (0; 0).
5. Нуль функции - значение аргумента х = 0.
6. Функция принимает положительные значения на промежутках
(-∞; 0) ∪ (0; +∞). Отрицательных значений функция не принимает.
7. Функция возрастает на промежутке [0; +∞) и убывает на промежутке (-∞; 0].
8. Функция у = х² - четная, непериодическая.
График функции называется параболой.
Аналогично: sin 4п=0, сos4П =1
sin3,5п=1, сos3,5П=0;
sin5/2П=1, cos 5/2П=0
sinПк=0 сosПк=1 (если к -четное ) и cosПк =-1 если к- нечетное число
(2к+1) - это формула нечетного числа, к примеру 3, 5, 7, 9 и т.д.
Следовательно, sin(2к+1)П=0, cos(2к+1)П =-1..