В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Awzida
Awzida
23.01.2023 16:43 •  Алгебра

Перейди от математической модели к словесной.
{7x+3y=363x+11=4y

Пусть x т зерна перевозила за один рейс первая машина,
y т зерна перевозила за один рейс вторая машина.

Перейдём от математической модели к словесной.

Зерно перевозилось на двух машинах различной грузоподъёмности.

В первый день было вывезено 36 т зерна, причём первая машина сделала 7 рейсов, а вторая —
рейса(-ов).

На следующий день первая машина за 3 рейса перевезла на 11 т зерна , чем вторая машина за 4 рейса.
Сколько тонн зерна перевозила каждая машина за один рейс?

(В окошко введи число, а не слово.)

Показать ответ
Ответ:
Lora20060
Lora20060
24.03.2020 21:21

ПРИМЕР №1. Найти остаток от деления уголком.

Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой

2.

x6 + 2x5 - x3 + x x4 - 4x + 2

x6 - 4x3 + 2x2 x2

2x5 + 3x3 - 2x2 + x

3.

x6 + 2x5 - x3 + x x4 - 4x + 2

x6 - 4x3 + 2x2 x2 + 2x

2x5 + 3x3 - 2x2 + x

2x5 - 8x2 + 4x

3x3 + 6x2 - 3x

Целая часть: x + 2

Остаток: 3x2 + 6x - 3

ПРИМЕР №2.. Разделить многочлены столбиком.

Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой

2.

x3 - 2x2 + x + 3 - 2x - 3

x3 + 3/2x2 - 1/2x2

- 7/2x2 + x + 3

3.

x3 - 2x2 + x + 3 - 2x - 3

x3 + 3/2x2 - 1/2x2 + 7/4x

- 7/2x2 + x + 3

- 7/2x2 - 21/4x

25/4x + 3

4.

x3 - 2x2 + x + 3 - 2x - 3

x3 + 3/2x2 - 1/2x2 + 7/4x - 25/8

- 7/2x2 + x + 3

- 7/2x2 - 21/4x

25/4x + 3

25/4x + 75/8

- 51/8

Целая часть: - 1/2x2 + 7/4x - 25/8

Остаток: - 51/8

0,0(0 оценок)
Ответ:
тамила52
тамила52
10.10.2022 06:50
Что такое подобные одночлены?

Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов:
3a2 и –4a2;      31 и 45;      a2bx4 и 1,4a2bx4;      100y3и 100y3

Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.

Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры:
4x2 + 15x2 = 19x2
5ab – 1,7ab = 3,3ab
13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0

Эти действия называются приведением подобных одночленов.

Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов:
2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x
2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x

То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу:
2 * 3 = 3 + 3 = 2 + 2 + 2

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота