В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
yarik159
yarik159
14.12.2022 01:58 •  Алгебра

Периметр прямоугольника равен 162 см, а его площадь равна 1640 см2. Найдите площадь квадрата, у которого сторона равна длине данного прямоугольника.​

Показать ответ
Ответ:
vipvip16tk
vipvip16tk
10.01.2020 10:35

Решение.

Арифметический подход к решению.

1. 3600 · 1,485 = 5346 (т. р.) — размер вклада к концу третьего года хранения.

2. 3600 · 1,1 · 1,1 · 1,1 = 4791,6 (т. р.) — размер вклада к концу третьего года хранения, зависящего от первоначально внесенной суммы.

3. 5346 − 4791,6 = 554,4 (т. р.) составляют ежегодные дополнительно внесенные вклады, включая начисленные процентные надбавки.

4. Пусть одну часть из суммы 554,4 т. р. составляет дополнительно внесенная сумма в третий

год хранения вклада вместе с процентной надбавкой, начисленной на ту же сумму. Тогда 1,1 часть

составит размер дополнительно внесенной суммы во второй год хранения вклада с учетом процентной надбавки, начисленной дважды (два года подряд).

5. Всего 1+1,1 = 2,1 (части).

6. 554,4 : 2.1 = 264 (т.р.) — доля одной части от 554, 4 т. р. вместе с ежегодной процентной

надбавкой.

7. 264 : 1,1 = 240 (т. р.) — сумма, ежегодно добавленная к вкладу

это для примера а так сам делай

0,0(0 оценок)
Ответ:
anonimus8310
anonimus8310
13.03.2022 03:09

y=3·x+4

Объяснение:

Абсцисса координат точек M(-2;-2) и N(2;10) различные (то есть прямая не проходит вертикально) и поэтому будем искать уравнение прямой в виде с угловым коэффициентом:

y=k·x+b.

Так как прямая проходить через точки M(-2;-2) и N(2;10), то подставим координаты точек в уравнение и получим систему уравнений относительно k и b:

\tt \displaystyle \left \{ {{-2=k \cdot (-2) + b} \atop {10=k \cdot 2 + b}} \right.

\tt \displaystyle \left \{ {{b = 2 \cdot k-2} \atop {10=2 \cdot k + 2 \cdot k-2}} \right.

\tt \displaystyle \left \{ {{b = 2 \cdot k-2} \atop {4 \cdot k =12}} \right.

\tt \displaystyle \left \{ {{b = 2 \cdot 3-2=4} \atop {k =3}} \right.

Подставляем найденные решения получим:

y=3·x+4.

Для решения задачи можно использовать общий вид уравнения прямой, проходящей через 2 точки M(x₁; y₁) и N(x₂; y₂):

\tt \displaystyle \frac{y-y_{1}}{y_{2}-y_{1}} = \frac{x-x_{1}}{x_{2}-x_{1}}.

При заданных значениях координат M(-2;-2) и N(2;10) имеем:

\tt \displaystyle \frac{y-(-2)}{10-(-2)} = \frac{x-(-2)}{2-(-2)}\\\\\frac{y+2}{10+2} = \frac{x+2}{2+2} \\\\\frac{y+2}{12} = \frac{x+2}{4} \\\\y+2=12 \cdot \left(\frac{x+2}{4} \right)\\\\y+2=3 \cdot (x+2) \\\\y = 3 \cdot x + 4.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота