тяж. --- 3 арб. тяж 35 % от всех мал. 3 арб. мал. ?, но 5/13 остатка всего --- ? арб. Решение: 100 - 35 = 65 (%) остаток после больших 65 * (5/13) = 25 (%) --- составляет масса маленьких арбузов от всех 100 - 35 - 25 = 40 (%) составляет масса средних (проданных) арбузов от всех (35/3) % масса одного большого от всех арбузов (25/3) % масса одного маленького от всех Х арб. количество средних арбузов (40/Х) % масса одного среднего от массы всех арбузов 25/3 < 40/Х < 35/3 т.к. это средние по массе арбузы (каждый меньше тяжелого и большее маленького) 120/25 > Х > 120/35 4 ц 4/5 > X > 3 ц 3/7 Так как число арбузов целое, то единственное значение Х=4 , т.е. фермер продал 4 средних арбуза. 3 + 3 + 4 = 10 (арб). всего арбузов. ответ: 10 арбузов вырастил фермер.
Т.к. sin(x) - непрерывная функция, она интегрируема, и можно выбирать любое разбиение с любыми точками на нем. Разобьем [a,b] на n равных частей и возьмем значения функции в левых точках получившихся отрезков: ∑ sin(a + k*(b-a)/n) * (b-a)/n, где k = 0 .. n-1
Здесь были применены формулы cos(x+y) = cos(x)cos(y) - sin(x)sin(y) cos(x-y) = cos(x)cos(y) + sin(x)sin(y) Тогда sin(x)sin(y) = 1/2 (cos(x-y) - cos(x+y)) Где x = a + k*(b-a)/n, y = (b-a)/2n
y было выбрано так, чтобы все косинусы, кроме крайних, попадали в сумму с разными знаками и сокращались.
Исходная сумма ∑ sin(a + k*(b-a)/n) * (b-a)/n преобразуется к виду (b-a)/n * 1/(2sin( (b-a)/2n )) * ∑ [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)], k = 0 .. n-1
Т.к. cos(a + (k + 1/2) * (b-a)/n) = cos(a + ((k+1)-1/2) * (b-a)/n), соответствующие слагаемые в сумме сокращаются, как и рассчитывалось. Т.е.
При n ⇒ ∞, это выражение стремится к cos(a) - cos(b)
Что касается коэффициента (b-a)/n * 1/(2sin( (b-a)/2n )) перед суммой, при n ⇒ ∞ синус стремится к своему аргументу, т.е. (b-a)/n * 1/(2sin( (b-a)/2n )) ⇒ (b-a)/n * 1/(2 * (b-a)/2n)) = 1
Т.е. сумма стремится cos(a) - cos(b) при n ⇒ ∞, причем этот предел по определению и является искомым определенным интегралом (диаметр разбиения (b-a)/n стремится к 0)
тяж 35 % от всех
мал. 3 арб.
мал. ?, но 5/13 остатка
всего --- ? арб.
Решение:
100 - 35 = 65 (%) остаток после больших
65 * (5/13) = 25 (%) --- составляет масса маленьких арбузов от всех
100 - 35 - 25 = 40 (%) составляет масса средних (проданных) арбузов от всех
(35/3) % масса одного большого от всех арбузов
(25/3) % масса одного маленького от всех
Х арб. количество средних арбузов
(40/Х) % масса одного среднего от массы всех арбузов
25/3 < 40/Х < 35/3 т.к. это средние по массе арбузы (каждый меньше тяжелого и большее маленького)
120/25 > Х > 120/35
4 ц 4/5 > X > 3 ц 3/7
Так как число арбузов целое, то единственное значение Х=4 , т.е. фермер продал 4 средних арбуза.
3 + 3 + 4 = 10 (арб). всего арбузов.
ответ: 10 арбузов вырастил фермер.
∑ sin(a + k*(b-a)/n) * (b-a)/n, где k = 0 .. n-1
Далее преобразуем слагаемые в разности косинусов:
sin(a + k*(b-a)/n) = sin(a + k*(b-a)/n) * sin( (b-a)/2n ) / sin( (b-a)/2n ) = 1/(2sin((b-a)/2n)) * [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)]
Здесь были применены формулы
cos(x+y) = cos(x)cos(y) - sin(x)sin(y)
cos(x-y) = cos(x)cos(y) + sin(x)sin(y)
Тогда sin(x)sin(y) = 1/2 (cos(x-y) - cos(x+y))
Где x = a + k*(b-a)/n, y = (b-a)/2n
y было выбрано так, чтобы все косинусы, кроме крайних, попадали в сумму с разными знаками и сокращались.
Исходная сумма ∑ sin(a + k*(b-a)/n) * (b-a)/n преобразуется к виду
(b-a)/n * 1/(2sin( (b-a)/2n )) * ∑ [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)], k = 0 .. n-1
Т.к. cos(a + (k + 1/2) * (b-a)/n) = cos(a + ((k+1)-1/2) * (b-a)/n), соответствующие слагаемые в сумме сокращаются, как и рассчитывалось. Т.е.
∑ [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)] = cos(a - 1/2 (b-a)/n) - cos(a + (n - 1/2)*(b-a)/n)
При n ⇒ ∞, это выражение стремится к cos(a) - cos(b)
Что касается коэффициента (b-a)/n * 1/(2sin( (b-a)/2n )) перед суммой, при n ⇒ ∞ синус стремится к своему аргументу, т.е. (b-a)/n * 1/(2sin( (b-a)/2n )) ⇒ (b-a)/n * 1/(2 * (b-a)/2n)) = 1
Т.е. сумма стремится cos(a) - cos(b) при n ⇒ ∞, причем этот предел по определению и является искомым определенным интегралом (диаметр разбиения (b-a)/n стремится к 0)