См. рисунок в приложении. Строим границы указанных областей. у=2х²+4х-1 - парабола, ветви вверх, вершина в точке (-1;-3) Парабола разбивает плоскость хОу на две части внутреннюю и внешнюю. Чтобы узнать какая из этих областей удовлетворяет неравенству, выбираем произвольную точку, например (0;0) и подставляем её координаты в неравенство 0≥-1 - верно. Значит область, определяемая неравенством у≥ 2х²+4х-1, содержит точку (0;0). Это внутренняя часть параболы.
Строим прямую х+у=2. Она также разбивает плоскость хОу на две полуплоскости. Область определяемая неравенством х+у≥2 расположена ниже прямой. Координаты точки (0;0) удовлетворяют неравенству х+у≤2: 0+0≤2 - верно.
Наибольшую длину имеет отрезок АВ, лежащий на прямой х=-1 О т в е т. р=-1
Строим границы указанных областей.
у=2х²+4х-1 - парабола, ветви вверх, вершина в точке (-1;-3)
Парабола разбивает плоскость хОу на две части
внутреннюю и внешнюю.
Чтобы узнать какая из этих областей удовлетворяет неравенству, выбираем произвольную точку, например (0;0) и подставляем её координаты в неравенство
0≥-1 - верно.
Значит область, определяемая неравенством у≥ 2х²+4х-1, содержит точку (0;0). Это внутренняя часть параболы.
Строим прямую х+у=2. Она также разбивает плоскость хОу на две полуплоскости.
Область определяемая неравенством х+у≥2 расположена ниже прямой.
Координаты точки (0;0) удовлетворяют неравенству х+у≤2:
0+0≤2 - верно.
Наибольшую длину имеет отрезок АВ, лежащий на прямой х=-1
О т в е т. р=-1
в) (10 + 8к)² = 100 + 160к + 64к²
г) (5у - 4х)² = 25у² - 40ху + 16х²
д) (5а + 1/5b)² (1/5) = (25a² + 2ab + 1/25b²) * 1/5 = 5a² + 2/5ab + 1/125b²
е) (1/4m - 2h)² = 1/16m - mh + 4h²
ж) (0,3x - 0,5a)² = 0,09x² - 0,3ax + 0,25a²
з) (10c + 0,1y)² = 100c² + 2cy + 0,01y²
a) (7 - 8b)² = 49 - 112b + 64b²
б) (0,6 + 2x)² = 0,36 + 2,4x + 4x²
в) (1/3x - 3y)² = 1/9x² - 2xy + 9y²
г) (4a + 1/8b)² = 16a² + ab + 1/64b²
д) (0,1m + 5n)² = 0,01m² + mn + 25n²
е) (12a - 0,3c)² = 144a - 7,2ac + 0,09c²