Находим ОДЗ (места в которых функция не существует):
Обозначаем нули на ОДЗ и находим знак функции f (x) в каждом промежутке, на которые разбиваем ОДЗ (Для того чтобы найти знак мы берем любое число, которое принадлежит данном промежутке, например на промежутке (-1; ∞) можно взять число 0, и подставляем его в неравенство вместо х и тогда высчитываем, если получается отрицательное число, то ставим знак минус, а если положительное, то плюс)
__+___-2__-____-1____+___>x Поскольку число в корне не может быть отрицательным, то ищем промежутки, которые больше нуля, то есть те, которые имеют знак + В данном случае таким промежутками есть (-∞; -2]∨[-1; +∞).Таким образом промежутка (-2;-1) не существует и в дальнейшем мы его не рассматриваем.
Находим нули функции:
Обозначаем нули и находим знак функции f (x) в каждом промежутке. Так как ОДЗ (-∞; -2]∨[-1; +∞), то промежуток (-2;-1) можно считать неверным и нет необходимости его рассматривать
___-__-2_____-1______-_____1____+__>x
Так как по условию нужно найти числа, которые меньше нуля, то промежутки имеющих знак минус и являются ответом для неравенства.
а) Попробуем составить такую последовательность a₁, a₂, a₃..., чтобы сумма элементов была минимальна. Тогда a₁ = 1. a₂ либо 7a₁, либо a₁ + 5, но, так как a₁ + 5 < 7a₁, a₂ = a₁ + 5 = 6. Отсюда a₃ = a₂ - 5 = 1, a₄ = 6 и т. д. Тогда S = 68 * 1 + 67 * 6 = 470 > 420. Так как минимальная сумма 135 элементов больше 420, такого быть не может.
б) Да. Например, последовательность 100, 105, 110, 105. S = 100 + 105 + 110 + 105 = 420, каждый её член отличается от предыдущего на 5.
в) Пусть количество членов n = 2. Тогда при a₁ = x a₂ = x + 5 или a₂ = 7x. В первом случае x + x + 5 = 420 ⇔ 2x = 415 ⇒ x = a₁ ∉ N, т. к. слева чётное число, а справа нечётное. Во втором случае x + 7x = 420 ⇔ 8x = 420 ⇔ x = 52,5 ⇒ x = a₁ ∉ N. Значит, n ≠ 2.
Пусть n = 3. Такая последовательность существует, например, 135, 140, 145. S = 135 + 140 + 145 = 420, каждый её член отличается от предыдущего на 5.
Находим ОДЗ (места в которых функция не существует):
Обозначаем нули на ОДЗ и находим знак функции f (x) в каждом промежутке, на которые разбиваем ОДЗ
(Для того чтобы найти знак мы берем любое число, которое принадлежит данном промежутке, например на промежутке (-1; ∞) можно взять число 0, и подставляем его в неравенство вместо х и тогда высчитываем, если получается отрицательное число, то ставим знак минус, а если положительное, то плюс)
__+___-2__-____-1____+___>x
Поскольку число в корне не может быть отрицательным, то ищем промежутки, которые больше нуля, то есть те, которые имеют знак +
В данном случае таким промежутками есть (-∞; -2]∨[-1; +∞).Таким образом промежутка (-2;-1) не существует и в дальнейшем мы его не рассматриваем.
Находим нули функции:
Обозначаем нули и находим знак функции f (x) в каждом промежутке.
Так как ОДЗ (-∞; -2]∨[-1; +∞), то промежуток (-2;-1) можно считать неверным и нет необходимости его рассматривать
___-__-2_____-1______-_____1____+__>x
Так как по условию нужно найти числа, которые меньше нуля, то промежутки имеющих знак минус и являются ответом для неравенства.
x∈(-∞;-2)∨(-1;1)
а) Попробуем составить такую последовательность a₁, a₂, a₃..., чтобы сумма элементов была минимальна. Тогда a₁ = 1. a₂ либо 7a₁, либо a₁ + 5, но, так как a₁ + 5 < 7a₁, a₂ = a₁ + 5 = 6. Отсюда a₃ = a₂ - 5 = 1, a₄ = 6 и т. д. Тогда S = 68 * 1 + 67 * 6 = 470 > 420. Так как минимальная сумма 135 элементов больше 420, такого быть не может.
б) Да. Например, последовательность 100, 105, 110, 105. S = 100 + 105 + 110 + 105 = 420, каждый её член отличается от предыдущего на 5.
в) Пусть количество членов n = 2. Тогда при a₁ = x a₂ = x + 5 или a₂ = 7x. В первом случае x + x + 5 = 420 ⇔ 2x = 415 ⇒ x = a₁ ∉ N, т. к. слева чётное число, а справа нечётное. Во втором случае x + 7x = 420 ⇔ 8x = 420 ⇔ x = 52,5 ⇒ x = a₁ ∉ N. Значит, n ≠ 2.
Пусть n = 3. Такая последовательность существует, например, 135, 140, 145. S = 135 + 140 + 145 = 420, каждый её член отличается от предыдущего на 5.
ответ: а) нет; б) да; в) 3