В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
revazhora
revazhora
22.03.2021 23:51 •  Алгебра

Побудуйте графік функції у= -х2+ 2х+ 3. Знайдіть за графіков:
1) область значень функції;
2) проміжок спадання функції.

Показать ответ
Ответ:
tigranchik111111
tigranchik111111
30.03.2023 01:53
Функция нам задана:
f(x)= \frac{(x^2+3x+2)^5}{3x+ \sqrt{2} + \sqrt{5} }
Вместо х подставляем 1-2х
f(1-2x)= \frac{((1-2x)^2+3(1-2x)+2)^5}{3(1-2x)+ \sqrt{2} + \sqrt{5} } = \frac{(1-4x+4x^2+3-6x+2)^5}{3-6x+ \sqrt{2} + \sqrt{5}} = \\ = \frac{4x^2-10x+6}{-6x+3+ \sqrt{2} + \sqrt{5}}
И решаем неравенство
\frac{4x^2-10x+6}{-6x+3+ \sqrt{2} + \sqrt{5}} \leq 0 \\ \frac{2x^2-5x+3}{-6x+3+ \sqrt{2} + \sqrt{5}} \leq 0
Так как дробь меньше 0, то у числителя и знаменателя разные знаки.
1)
{ 2x^2 - 5x + 3 ≤ 0
{ -6x + 3 + √2 + √5 > 0
Раскладываем на множители 1 неравенство
{ (x - 1)(2x - 3) ≤ 0
{ 6x < 3 + √2 + √5
Получаем
{ x ∈ [1; 3/2]
{ x < (3 + √2 + √5)/6 ≈ 1,108 < 3/2
Решение: x1 ∈[1; (3 + √2 + √5)/6)

2)
{ 2x^2 - 5x + 3 ≥ 0
{ -6x + 3 + √2 + √5 < 0
Решаем точно также
{ (x - 1)(2x - 3) ≥ 0
{ 6x > 3 + √2 + √5
Получаем
{ x ∈ (-oo; 1] U [3/2; +oo)
{ x > (3 + √2 + √5)/6 ≈ 1,108 < 3/2
Решение: x ∈ [3/2; +oo)
ответ: x ∈ [1; (3 + √2 + √5)/6) U [3/2; +oo)
0,0(0 оценок)
Ответ:
mahinaboboeva
mahinaboboeva
31.03.2022 17:49

Объяснение:

Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.

Разность рациональных чисел - это рациональное число.

Доказательство:

k/m - n/p = (kp - mn) / mp = q / s,

где q = kp - mn (целое), s = mp (натуральное)

a^2 и b^2 - рациональные числа.

Значит, их разность также является рациональным числом.

Разложим разность квадратов:

a^2 - b^2 = (a - b)(a + b)

Отсюда a + b = (a^2 - b^2) / (a - b)

Это частное рациональных чисел.

Выясним, является ли рациональным частное рациональных чисел.

(k/m) / (n/p) = kp / mn = q / s,

где q = kp (целое), s = mn (натуральное)

при условии, что n/p (делитель) не равен 0.

Да: частное рациональных чисел также рационально.

a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).

Следовательно, a + b - рациональное число, ч. т. д.

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота