Далее, исследуем знак производной слева и справа от точек, чтобы понять, где максимум а где минимум: (1) Слева от 0 у нас + , а справа - . Справа от 1 у нас + ответ 1-го уравнения: 0- max ; 1 - min ответ 2-го уравнения : 2 - min
||2^x+x-2|-1| > 2^x-x-1 Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты))) Помним о важном правиле: |x| =x, если x>=0 |x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу: {|2^x+x-2|-1 >2^x-x-1 {|2^x+x-2|-1> -2^x+x+1 Переносим "-1" из левой части в правую: {|2^x+x-2| > 2^x-x {|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу: {2^x+x-2>2^x-x {2x-2>0 {2^x+x-2>x-2^x {2*2^x-2>0 {2^x+x-2>-2^x+x+2 {2*2^x-4>0 {2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1 {2^x>1 {x>0 {2^x>2 {x>1 {x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
(1) у’ = 6х^2 -6х
(2)у’ = 3х^2 -12х + 12
Потом мы эти выражения приравниваем к 0:
(1) х(6х - 6) = 0
х = 0 - критические точки
х = 1 - критические точки
(2) х^2 - 4х + 4 = 0 можем упростить так :
(х - 2) (х - 2)=0
х= 2 - критическая точка
Далее, исследуем знак производной слева и справа от точек, чтобы понять, где максимум а где минимум:
(1) Слева от 0 у нас + , а справа - . Справа от 1 у нас +
ответ 1-го уравнения: 0- max ; 1 - min
ответ 2-го уравнения : 2 - min
Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты)))
Помним о важном правиле:
|x| =x, если x>=0
|x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу:
{|2^x+x-2|-1 >2^x-x-1
{|2^x+x-2|-1> -2^x+x+1
Переносим "-1" из левой части в правую:
{|2^x+x-2| > 2^x-x
{|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу:
{2^x+x-2>2^x-x {2x-2>0
{2^x+x-2>x-2^x {2*2^x-2>0
{2^x+x-2>-2^x+x+2 {2*2^x-4>0
{2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1
{2^x>1 {x>0
{2^x>2 {x>1
{x>0 {x>0
Решением неравенства является промежуток (1; + беск.)