31,75; 508
Объяснение:
(an) - арифметическая прогрессия
a₁+a₂+a₃=27
a₁+a₁+d+a₁+2d=27
3(a₁+d)=27
a₁+d=9
a_1+d=a₂ => a₂=9
a₁+9+a₃=27
a₁+a₃=27-9=18
a₃=18-a₁
(bn) - геометрическая прогрессия
b₁=a₁-1
b₂=a₂-1=9-1=8
b₃=a₃+3=18-a₁+3=21-a₁
8/(a₁-1) = (21-a₁)/8
(a₁-1)(21-a₁)=64
21a₁-21-a₁²+a₁-64=0
-a₁²+22a₁-85=0
a₁²-22a₁+85=0
D=(-22)²-4*1*85= 484-340=144=12²
(a₁)₁ = (22+12)/2 = 34/2 = 17
(a₁)₂ = (22-12)/2 = 10/2 = 5
Получаем сразу две геометрические прогрессии:
1) b₁=17-1=16, b₂=8, b₃=21-17=4 => q = 8/16=1/2
S₇ = b₁(q⁷-1)/(q-1) = 16((1/2)⁷-1)/(1/2 -1) = 16(1/128 -1)/(-1/2) =
= -16*2*(-127/128)=127/4 = 31,75
2) b₁=5-1=4, b₂=8, b₃=21-5=16 => q=8/4=2
S₇ = b₁(q⁷-1)/(q-1) = 4(2⁷-1)/(2-1) = 4*(128-1)/1 = 4*127 = 508
31,75; 508
Объяснение:
(an) - арифметическая прогрессия
a₁+a₂+a₃=27
a₁+a₁+d+a₁+2d=27
3(a₁+d)=27
a₁+d=9
a_1+d=a₂ => a₂=9
a₁+9+a₃=27
a₁+a₃=27-9=18
a₃=18-a₁
(bn) - геометрическая прогрессия
b₁=a₁-1
b₂=a₂-1=9-1=8
b₃=a₃+3=18-a₁+3=21-a₁
8/(a₁-1) = (21-a₁)/8
(a₁-1)(21-a₁)=64
21a₁-21-a₁²+a₁-64=0
-a₁²+22a₁-85=0
a₁²-22a₁+85=0
D=(-22)²-4*1*85= 484-340=144=12²
(a₁)₁ = (22+12)/2 = 34/2 = 17
(a₁)₂ = (22-12)/2 = 10/2 = 5
Получаем сразу две геометрические прогрессии:
1) b₁=17-1=16, b₂=8, b₃=21-17=4 => q = 8/16=1/2
S₇ = b₁(q⁷-1)/(q-1) = 16((1/2)⁷-1)/(1/2 -1) = 16(1/128 -1)/(-1/2) =
= -16*2*(-127/128)=127/4 = 31,75
2) b₁=5-1=4, b₂=8, b₃=21-5=16 => q=8/4=2
S₇ = b₁(q⁷-1)/(q-1) = 4(2⁷-1)/(2-1) = 4*(128-1)/1 = 4*127 = 508
б) (b₁ + b₂ + b₃)/3 = 14/3, ⇒b₁ + b₂ + b₃ = 14, ⇒b₁ + b₁q + b₁q² = 14,⇒
⇒b₁ + b₁q² = 10
Получили систему двух уравнений с 2-мя переменными:
b₁q = 4
b₁ + b₁q² = 10
решаем:
b₁ + b₁q*q = 10, ⇒ b₁ + 4q = 10, ⇒b₁ = 10 - 4q
Это наша подстановка.
подставим в 1-е уравнение.
b₁q = 4, ⇒ (10 - 4q)*q = 4, ⇒ 10q -4q² = 4, ⇒ 4q² -10q +4 = 0,⇒
⇒ 2q² -5q +2 = 0. Решаем D = 25 -16 = 9
q = (5 +-3)/4
q₁= 2, q₁= 1/2
а) q₁= 2, ⇒b₁ = 10 - 4q = 10 - 8 = 2, S₅ = b₁(q⁵-1)/(q -1) = 2*31+1 = 62
б) q₂ = 1/2, ⇒b₁ = 10 -4q = 10 - 4*1/2 = 8, S₅ = 8(1/32 - 1)/(-1/2) = 15,5