а) Попробуем составить такую последовательность a₁, a₂, a₃..., чтобы сумма элементов была минимальна. Тогда a₁ = 1. a₂ либо 7a₁, либо a₁ + 5, но, так как a₁ + 5 < 7a₁, a₂ = a₁ + 5 = 6. Отсюда a₃ = a₂ - 5 = 1, a₄ = 6 и т. д. Тогда S = 68 * 1 + 67 * 6 = 470 > 420. Так как минимальная сумма 135 элементов больше 420, такого быть не может.
б) Да. Например, последовательность 100, 105, 110, 105. S = 100 + 105 + 110 + 105 = 420, каждый её член отличается от предыдущего на 5.
в) Пусть количество членов n = 2. Тогда при a₁ = x a₂ = x + 5 или a₂ = 7x. В первом случае x + x + 5 = 420 ⇔ 2x = 415 ⇒ x = a₁ ∉ N, т. к. слева чётное число, а справа нечётное. Во втором случае x + 7x = 420 ⇔ 8x = 420 ⇔ x = 52,5 ⇒ x = a₁ ∉ N. Значит, n ≠ 2.
Пусть n = 3. Такая последовательность существует, например, 135, 140, 145. S = 135 + 140 + 145 = 420, каждый её член отличается от предыдущего на 5.
Найдем, в каких пределах может изменяться сума цифр трехзначного числа:
- минимальная сумма цифр равна 1 (у числа 100)
- максимальная сумма цифр равна 27 (у числа 999)
Найдем наибольшую сумму цифр среди чисел от 1 до 27. Очевидно, что нужно по возможности максимально увеличить разряд единиц и разряд десятков. Таким образом, образуется два кандидата: числа 19 и 27.
- сумма цифр числа 19 равна 1+9=10
- сумма цифр числа 27 равна 2+7=9
Итак, наибольшая сумма цифр суммы цифр равна 10. Значит, искомая сумма цифр равна 19.
Трехзначные числа с суммой цифр 19 можно разделить на две группы: содержащие одинаковые цифры и не содержащие одинаковые цифры.
Рассмотрим случай, когда в записи числа используются одинаковые цифры:
9-9-1, 9-5-5, 8-8-3, 7-7-5, 7-6-6 - итого 5 случаев, для каждого из которых существует перестановок цифр указать место для уникальной цифры). Всего для этих вариантов имеем 5·3=15 чисел
Рассмотрим случай, когда в записи числа не используются одинаковые цифры:
9-8-2, 9-7-3, 9-6-4, 8-7-4, 8-6-5 - итого, 5 случаев, для каждого из которых существует перестановок цифр. Всего для этих вариантов имеем 5·6=30 чисел
Таким образом, всего есть 15+30=45 чисел, удовлетворяющих поставленному условию.
а) Попробуем составить такую последовательность a₁, a₂, a₃..., чтобы сумма элементов была минимальна. Тогда a₁ = 1. a₂ либо 7a₁, либо a₁ + 5, но, так как a₁ + 5 < 7a₁, a₂ = a₁ + 5 = 6. Отсюда a₃ = a₂ - 5 = 1, a₄ = 6 и т. д. Тогда S = 68 * 1 + 67 * 6 = 470 > 420. Так как минимальная сумма 135 элементов больше 420, такого быть не может.
б) Да. Например, последовательность 100, 105, 110, 105. S = 100 + 105 + 110 + 105 = 420, каждый её член отличается от предыдущего на 5.
в) Пусть количество членов n = 2. Тогда при a₁ = x a₂ = x + 5 или a₂ = 7x. В первом случае x + x + 5 = 420 ⇔ 2x = 415 ⇒ x = a₁ ∉ N, т. к. слева чётное число, а справа нечётное. Во втором случае x + 7x = 420 ⇔ 8x = 420 ⇔ x = 52,5 ⇒ x = a₁ ∉ N. Значит, n ≠ 2.
Пусть n = 3. Такая последовательность существует, например, 135, 140, 145. S = 135 + 140 + 145 = 420, каждый её член отличается от предыдущего на 5.
ответ: а) нет; б) да; в) 3
Найдем, в каких пределах может изменяться сума цифр трехзначного числа:
- минимальная сумма цифр равна 1 (у числа 100)
- максимальная сумма цифр равна 27 (у числа 999)
Найдем наибольшую сумму цифр среди чисел от 1 до 27. Очевидно, что нужно по возможности максимально увеличить разряд единиц и разряд десятков. Таким образом, образуется два кандидата: числа 19 и 27.
- сумма цифр числа 19 равна 1+9=10
- сумма цифр числа 27 равна 2+7=9
Итак, наибольшая сумма цифр суммы цифр равна 10. Значит, искомая сумма цифр равна 19.
Трехзначные числа с суммой цифр 19 можно разделить на две группы: содержащие одинаковые цифры и не содержащие одинаковые цифры.
Рассмотрим случай, когда в записи числа используются одинаковые цифры:
9-9-1, 9-5-5, 8-8-3, 7-7-5, 7-6-6 - итого 5 случаев, для каждого из которых существует перестановок цифр указать место для уникальной цифры). Всего для этих вариантов имеем 5·3=15 чисел
Рассмотрим случай, когда в записи числа не используются одинаковые цифры:
9-8-2, 9-7-3, 9-6-4, 8-7-4, 8-6-5 - итого, 5 случаев, для каждого из которых существует перестановок цифр. Всего для этих вариантов имеем 5·6=30 чисел
Таким образом, всего есть 15+30=45 чисел, удовлетворяющих поставленному условию.
ответ: 45