1) эти треугольники подобны по 3 углам. 2) к=8:3=8/3 коэффициент подобия. 3)24:8/3=9 см это высота второго(большего треуг) 4) в равнобед треугольнике: высота=биссектриса=медиана Тогда половина основания второго треугольника: 24:2=12 см Рассмотрим прямоугольный треугольник: катет 12 см, второй катет 9 см. Найдем гипотенузу по теореме Пифагора: Х^2=144+81=225 Х=15 см это боковая сторона большого равнобедренного треугольника Вторая сторона у него тоже 15 см, т к боковые стороны равны. Р=15+15+14=54 см периметр
Если функция y = f(x) непрерывна на отрезке [a, b], то она достигает на этом отрезке наименьшего и наибольшего значений. Это, как уже говорилось, может произойти либо в точках экстремума, либо на концах отрезка. Поэтому для нахождения наименьшего и наибольшего значений функции, непрерывной на отрезке [a, b], нужно вычислить её значения во всех критических точках и на концах отрезка, а затем выбрать из них наименьшее и наибольшее.
Пусть, например, требуется определить наибольшее значение функции f(x) на отрезке [a, b]. Для этого следует найти все её критические точки, лежащие на [a, b].
2) к=8:3=8/3 коэффициент подобия.
3)24:8/3=9 см это высота второго(большего треуг)
4) в равнобед треугольнике: высота=биссектриса=медиана
Тогда половина основания второго треугольника:
24:2=12 см
Рассмотрим прямоугольный треугольник: катет 12 см, второй катет 9 см. Найдем гипотенузу по теореме Пифагора:
Х^2=144+81=225
Х=15 см это боковая сторона большого равнобедренного треугольника
Вторая сторона у него тоже 15 см, т к боковые стороны равны.
Р=15+15+14=54 см периметр
Пусть, например, требуется определить наибольшее значение функции f(x) на отрезке [a, b]. Для этого следует найти все её критические точки, лежащие на [a, b].