3.
sin²φ+2cos²φ / sin²φ-cos²φ, если tgφ = 2
Разделим числитель и знаменатель на cos²φ, получим:
sin²φ+2cos²φ / sin²φ-cos²φ = sin²φ+2cos²φ/cos²φ / sin²φ -cos²φ/cos²φ = sin²φ/cos²φ + 2cos²φ/cos²φ / sin²φ/cos²φ - cos²φ/cos²φ = tg²φ + 2/tg²φ - 1 = 2²+2/2²-1 = 4+2/4-1 = 6/3 = 2
ответ: 2
4.
sinx × cosx + cos²x + 3sin²x = 3
sinx × cosx + cos²x + 3(1-cos²x) = 3
sinx × cosx + cos²x + 3 - 3cos²x = 3
sinx × cosx + cos²x + 3 - 3cos²x - 3 = 0
sinx × cosx + cos²x - 3cos²x = 0
sinx × cosx - 2cos²x = 0
cosx × (sinx - 2cosx) = 0
cosx = 0 или sinx - 2cosx = 0
x₁ = π/2 + πn, n∈Z sinx = 2cosx | : cosx
sinx/cosx = 2cosx/cosx
tgx = 2
x₂ = arctg 2 + πn, n∈Z
ответ: x₁ = π/2 + πn, n∈Z; x₂ = arctg 2 + πn, n∈Z
1.
Сумма углов в треугольнике равна 180°
третий угол равен: 180° - 70° - 50° = 60°
2.
Так как один угол в прямоугольном треугольнике равен 90°, значит сумма двух оставшихся тоже 90°.
третий угол равен 90° - 45° = 45°
Треугольник равнобедренный => приледажие к основанию углы равны. Находим:
(180°-80°)/2 = 50° каждый угол
Также равнобедренный треугольник, значит второй угол у основания равен 15°
третий угол: 180° - 2*15° = 150°
5.
Угол, снежный с внешним углом, равен 180° - 120° = 60°, а так как треугольник равнобедренный => все углы по 60°
6.
Треугольник равнобедренный, углы у основания равны => угол ВАС = угол ВСА = 50°
угол АВС = 180° - 2*50° = 80°
Так как АD - биссектриса, значит угол DAC равен 50°/2=25°
Рассмотрим треугольник АDC: угол ADC = 180° - угол DAC - угол ВСА= 180°-25°-50°=105°
3.
sin²φ+2cos²φ / sin²φ-cos²φ, если tgφ = 2
Разделим числитель и знаменатель на cos²φ, получим:
sin²φ+2cos²φ / sin²φ-cos²φ = sin²φ+2cos²φ/cos²φ / sin²φ -cos²φ/cos²φ = sin²φ/cos²φ + 2cos²φ/cos²φ / sin²φ/cos²φ - cos²φ/cos²φ = tg²φ + 2/tg²φ - 1 = 2²+2/2²-1 = 4+2/4-1 = 6/3 = 2
ответ: 2
4.
sinx × cosx + cos²x + 3sin²x = 3
sinx × cosx + cos²x + 3(1-cos²x) = 3
sinx × cosx + cos²x + 3 - 3cos²x = 3
sinx × cosx + cos²x + 3 - 3cos²x - 3 = 0
sinx × cosx + cos²x - 3cos²x = 0
sinx × cosx - 2cos²x = 0
cosx × (sinx - 2cosx) = 0
cosx = 0 или sinx - 2cosx = 0
x₁ = π/2 + πn, n∈Z sinx = 2cosx | : cosx
sinx/cosx = 2cosx/cosx
tgx = 2
x₂ = arctg 2 + πn, n∈Z
ответ: x₁ = π/2 + πn, n∈Z; x₂ = arctg 2 + πn, n∈Z
1.
Сумма углов в треугольнике равна 180°
третий угол равен: 180° - 70° - 50° = 60°
2.
Так как один угол в прямоугольном треугольнике равен 90°, значит сумма двух оставшихся тоже 90°.
третий угол равен 90° - 45° = 45°
3.
Треугольник равнобедренный => приледажие к основанию углы равны. Находим:
(180°-80°)/2 = 50° каждый угол
4.
Также равнобедренный треугольник, значит второй угол у основания равен 15°
третий угол: 180° - 2*15° = 150°
5.
Угол, снежный с внешним углом, равен 180° - 120° = 60°, а так как треугольник равнобедренный => все углы по 60°
6.
Треугольник равнобедренный, углы у основания равны => угол ВАС = угол ВСА = 50°
угол АВС = 180° - 2*50° = 80°
Так как АD - биссектриса, значит угол DAC равен 50°/2=25°
Рассмотрим треугольник АDC: угол ADC = 180° - угол DAC - угол ВСА= 180°-25°-50°=105°