1) Запишите уравнение прямой, если известен её угловой коэффициент и точка, в которой прямая пересекает ось y. а) R=2\5, A( 0; 0:) б) R=0, A(0; -4;)
формула линейного уравнения
y=Rx +b - пусть будет не k
прямая пересекает ось y. - значит x=0 ; b= y
а) R=2\5, A( 0; 0:)
здесь b = 0
уравнение прямой y = 2/5x +0 ; y=2/5x
прямая проходит через центр координат
б) R=0, A(0; -4;)
здесь b = 4
уравнение прямой y = 0* x +4 ; y= 4
прямая параллельна оси ОХ , проходит через у=4
2) Определите, пересекаются ли данные прямые; если пересекаются, то постройте эти координаты точки пересечения; проверьте результат, подставив найденные координаты в уравнение
формула линейного уравнения
y=kx +b
если уловой коэффициент k будет иметь одинаковое значение, значит параллельны
а)
y=-1\2x+3 k=-1/2
и
y=x-3; k=1
пересекаются
найдем точку пересечения
-1\2x+3 = x-3
3/2 x = 6
x= 4 ; y = x-3 =4-3=1
(4; 1)
проверка
1=-1\2*4+3
1=1 - тождество
и
1=4-3;
1=1 - тождество
б)
y=1\3x+1 k=1/3
и
y=-1\3+3 k=-1/3
пересекаются
найдем точку пересечения
1/3x +1 = -1/3x +3
2/3x = 2
x= 3 ; y =1/3*3 +1 = 2
(3; 2)
проверка
2=1\3*3+1
2=2 - тождество
2=-1\3*3+3
2 =2 - тождество
3) Определите, параллельны или пересекаются прямые: 6x+2y=3 и 3x+y=1.
приведем к виду
y=kx +b
если уловой коэффициент k будет иметь одинаковое значение, значит параллельны
В решении.
Объяснение:
Решить уравнения:
1) х² - 10х - 24 = 0
D=b²-4ac = 100 + 96 = 196 √D=14;
х₁=(-b-√D)/2a
х₁=(10-14)/2
х₁= -4/2
х₁= -2;
х₂=(-b+√D)/2a
х₂=(10+14)/2
х₂=24/2
х₂=12;
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
2) 3х² - 7х + 4 = 0
D=b²-4ac = 49 - 48 = 1 √D=1;
х₁=(-b-√D)/2a
х₁=(7-1)/6
х₁= 6/6
х₁= 1;
х₂=(-b+√D)/2a
х₂=(7+1)/6
х₂=8/6
х₂=4/3;
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
3) 9у² + 6у + 1 = 0
D=b²-4ac = 36 - 36 = 0 √D=0;
у=(-b±√D)/2a
у=(-6±0)/18
у = -6/18
у = -1/3.
Проверка путём подстановки вычисленного значения у в уравнение показала, что данное решение удовлетворяет данному уравнению.
4) 3р² + 2р + 1 = 0
D=b²-4ac = 4 - 12 = -8
D < 0;
Уравнение не имеет действительных корней.
1) Запишите уравнение прямой, если известен её угловой коэффициент и точка, в которой прямая пересекает ось y. а) R=2\5, A( 0; 0:) б) R=0, A(0; -4;)
формула линейного уравнения
y=Rx +b - пусть будет не k
прямая пересекает ось y. - значит x=0 ; b= y
а) R=2\5, A( 0; 0:)
здесь b = 0
уравнение прямой y = 2/5x +0 ; y=2/5x
прямая проходит через центр координат
б) R=0, A(0; -4;)
здесь b = 4
уравнение прямой y = 0* x +4 ; y= 4
прямая параллельна оси ОХ , проходит через у=4
2) Определите, пересекаются ли данные прямые; если пересекаются, то постройте эти координаты точки пересечения; проверьте результат, подставив найденные координаты в уравнение
формула линейного уравнения
y=kx +b
если уловой коэффициент k будет иметь одинаковое значение, значит параллельны
а)
y=-1\2x+3 k=-1/2
и
y=x-3; k=1
пересекаются
найдем точку пересечения
-1\2x+3 = x-3
3/2 x = 6
x= 4 ; y = x-3 =4-3=1
(4; 1)
проверка
1=-1\2*4+3
1=1 - тождество
и
1=4-3;
1=1 - тождество
б)
y=1\3x+1 k=1/3
и
y=-1\3+3 k=-1/3
пересекаются
найдем точку пересечения
1/3x +1 = -1/3x +3
2/3x = 2
x= 3 ; y =1/3*3 +1 = 2
(3; 2)
проверка
2=1\3*3+1
2=2 - тождество
2=-1\3*3+3
2 =2 - тождество
3) Определите, параллельны или пересекаются прямые: 6x+2y=3 и 3x+y=1.
приведем к виду
y=kx +b
если уловой коэффициент k будет иметь одинаковое значение, значит параллельны
6x+2y= 3 ; y=(3-6x)/2 =-3x +1,5 ; k =-3
3x+y=1 ; y=-3x ; k=-3
прямые параллельны