Рекомендую поступить так. : Привести трехчлен к виду A(x+B)^2+C тогда: это обычная парабола y=x^2, но: 1. Сжата или растянута в А раз вдоль оси иксов 2. Сдвинута по оси икс на -В 3. Сдвинута по оси игреков на С. Ну а точки пересечения с осями очень легко вычисляются: 1. Y=0 вычисляешь пересечение с Х 2. X = 0 вычисляешь пересечение с Y Вот и все правила. Привести к указанному виду за счет выделения полного квадрата. Знак перед x^2 говорит о направленности ветвей.
Для того, чтобы найти точки пересечения прямых у = 3 - х и у = 2х, нужно приравнять правые части и решить уравнение относительно переменной х.
Следовательно получим:
3 - х = 2х (перенесем переменную х из левой части в правую, поменяв знак на противоположный);
3 = 2х + х;
3 = х * (2 + 1);
3 = х * 3 (для того, чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель);
х = 3 : 3;
х = 1.
Тогда у = 3 - 1 = 2.
Следовательно точка пересечения прямых у = 3 - х и у = 2х имеет координаты: (1; 2).
ответ: (1; 2).
Объяснение:
Рекомендую поступить так. :
Привести трехчлен к виду A(x+B)^2+C тогда:
это обычная парабола y=x^2, но:
1. Сжата или растянута в А раз вдоль оси иксов
2. Сдвинута по оси икс на -В
3. Сдвинута по оси игреков на С.
Ну а точки пересечения с осями очень легко вычисляются:
1. Y=0 вычисляешь пересечение с Х
2. X = 0 вычисляешь пересечение с Y
Вот и все правила.
Привести к указанному виду за счет выделения полного квадрата.
Знак перед x^2 говорит о направленности ветвей.