Преобразуем функцию перед построением графика: \frac{(x-7)(x^2-10x+9)}{x-9} = Разложим второй множитель на множители, для этого решим уравнение x²-10x+9=0 D=(-10)²-4*9=100-36=64=8² x= \frac{10-8}{2}=1 x= \frac{10+8}{2}=9 x²-10x+9=(x-1)(x-9) Подставляем y= \frac{(x-7)(x-1)(x-9)}{x-9} =(x-7)(x-1)=x^2-x-7x+7=x^2-8x+7 Получили квадратное уравнение графиком которого является парабола, ветви которой направлены вверх. Прямая у=m имеет одну общую точку с параболой только на вершине параболы, поэтому по графику это точка А(4;-9). Её же можно найти как координаты вершины параболы: x=-b/2a=8/2=4 y=4²-8*4+7=16-32+7=-9
\frac{(x-7)(x^2-10x+9)}{x-9} =
Разложим второй множитель на множители, для этого решим уравнение
x²-10x+9=0
D=(-10)²-4*9=100-36=64=8²
x= \frac{10-8}{2}=1
x= \frac{10+8}{2}=9
x²-10x+9=(x-1)(x-9)
Подставляем
y= \frac{(x-7)(x-1)(x-9)}{x-9} =(x-7)(x-1)=x^2-x-7x+7=x^2-8x+7
Получили квадратное уравнение графиком которого является парабола, ветви которой направлены вверх. Прямая у=m имеет одну общую точку с параболой только на вершине параболы, поэтому по графику это точка А(4;-9). Её же можно найти как координаты вершины параболы:
x=-b/2a=8/2=4
y=4²-8*4+7=16-32+7=-9