Трапеция АВСД, ДА=СВ, АВ=4,ДС=16, уголД=уголС,проводим перпендикуляры АН и ВК на ДС, треугольникДАН=треугольникКВС, по гипотенузе и острому углу, ДН=КС, АН=ВК, НАВК-прямоугольник АВ=НК=4, ДН=КС=(ДС-НК)/2=(16-4)/2=6, в трапецию можно вписать окружность при условии когда сумма оснований=сумме боковых сторон, АВ+ДС=АД+ВС, 4+16=2АД, АД=ВС=10, треугольник ДАН прямоугольнгый, АН=диаметру окружности=корень(ДА в квадрате-ДН в квадрате)=корень(100-36)=8, радиус=8/2=4, площадь круга=пи*радиус в квадрате=16пи
Равенство не сходится. Либо у Вас в задании ошибка, либо же оно сходиться действительно не должно. Распишу свой ход мыслей. При решении использовал формулы суммы синусов и разности косинусов разных углов. Ваш Пример имеет вид:
Для удобства, перенес косинус 55 градусов в правую часть равенства. Теперь нам остается доказать, что сумма синусов 25 и 35 градусов равна косинусу 55 градусов. Существует такая формула суммы синусов:
Теперь запишем сумму наших синусов:
Где синус 30 градусов это 1/2, либо 0,5. Также, по свойству косинуса: Cos(-5 градусов) равен cos(5 градусов). То есть, мы получаем:
У нас должно было получиться равенство, но как видите, cos(5 градусов) никак не может быть равен cos(55 градусов). Для надежности, переносим косинус 55 градусов в левую сторону равенства, и используем формулу для разности косинусов разных углов. Формула имеет вид:
Применим для нашего случая:
В итоге, мы получили синус 25 градусов, который никак не может быть равен нулю.
Распишу свой ход мыслей. При решении использовал формулы суммы синусов и разности косинусов разных углов.
Ваш Пример имеет вид:
Для удобства, перенес косинус 55 градусов в правую часть равенства.
Теперь нам остается доказать, что сумма синусов 25 и 35 градусов равна косинусу 55 градусов.
Существует такая формула суммы синусов:
Теперь запишем сумму наших синусов:
Где синус 30 градусов это 1/2, либо 0,5.
Также, по свойству косинуса: Cos(-5 градусов) равен cos(5 градусов).
То есть, мы получаем:
У нас должно было получиться равенство, но как видите, cos(5 градусов) никак не может быть равен cos(55 градусов).
Для надежности, переносим косинус 55 градусов в левую сторону равенства, и используем формулу для разности косинусов разных углов. Формула имеет вид:
Применим для нашего случая:
В итоге, мы получили синус 25 градусов, который никак не может быть равен нулю.