В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
vvi1310
vvi1310
25.05.2022 01:52 •  Алгебра

Постройте в координатной плоскости фигуру, координаты каждой точки которой являются решением системы неравенств: {х²+у²<=4
{у=>-1

("=>" это больше или равно, "<=" это меньше или равно)
заранее большое

Показать ответ
Ответ:
fghjik
fghjik
30.03.2021 23:41
Трапеция АВСД, ДА=СВ, АВ=4,ДС=16, уголД=уголС,проводим перпендикуляры АН и ВК на ДС, треугольникДАН=треугольникКВС, по гипотенузе и острому углу, ДН=КС, АН=ВК, НАВК-прямоугольник АВ=НК=4, ДН=КС=(ДС-НК)/2=(16-4)/2=6, в трапецию можно вписать окружность при условии когда сумма оснований=сумме боковых сторон, АВ+ДС=АД+ВС, 4+16=2АД, АД=ВС=10, треугольник ДАН прямоугольнгый, АН=диаметру окружности=корень(ДА в квадрате-ДН в квадрате)=корень(100-36)=8, радиус=8/2=4, площадь круга=пи*радиус в квадрате=16пи
0,0(0 оценок)
Ответ:
Liliii87644
Liliii87644
31.01.2021 08:58
Равенство не сходится. Либо у Вас в задании ошибка, либо же оно сходиться действительно не должно.
Распишу свой ход мыслей. При решении использовал формулы суммы синусов и разности косинусов разных углов.
Ваш Пример имеет вид:
sin(25)+sin(35)-cos(55)=0 \\ &#10;sin(25)+sin(35)=cos(55)
Для удобства, перенес косинус 55 градусов в правую часть равенства.
Теперь нам остается доказать, что сумма синусов 25 и 35 градусов равна косинусу 55 градусов.
Существует такая формула суммы синусов:
sin( \alpha )+sin( \beta )=2*sin(\frac{ \alpha + \beta }{2})*cos(\frac{ \alpha - \beta }{2})
Теперь запишем сумму наших синусов:
sin (25)+sin(35)=2*sin(\frac{25+35}{2})*cos(\frac{25-35}{2})=\\&#10;=2*sin(30)*cos(-5)
Где синус 30 градусов это 1/2, либо 0,5.
Также, по свойству косинуса: Cos(-5 градусов) равен cos(5 градусов).
То есть, мы получаем:
2*sin(30)*cos(-5)=2*0,5*cos(-5)=cos(-5)=cos(5)
У нас должно было получиться равенство, но как видите, cos(5 градусов) никак не может быть равен cos(55 градусов).
Для надежности, переносим косинус 55 градусов в левую сторону равенства, и используем формулу для разности косинусов разных углов. Формула имеет вид:
cos( \alpha )-cos( \beta )=2*sin(\frac{\alpha + \beta}{2})*sin(\frac{ \beta - \alpha }{2})
Применим для нашего случая:
cos(5)-cos(55)=2*sin(\frac{5+55}{2})*sin(\frac{55-5}{2})=\\&#10;=2*sin(30)*sin(25)=2*0,5*sin(25)=sin(25)
В итоге, мы получили синус 25 градусов, который никак не может быть равен нулю.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота