Пожелуйста 10 !
на доске размером 30 х х клеток расставлено несколько ладей таким образом, что каждая ладья бьет ровно одну дру¬гую. при этом в каждой вертикали и в каждой горизонтали присутствует как минимум одна ладья. докажите, что х де-лится на 3. (ладья — это шахматная фигура, которая держит под боем все клетки своей вертикали и своей горизонтали.)
25 a^4 + 50 a^3 x + 35 a^2 x^2 + 10 a x^3 + x^4
попробуем выделить полный квадрат
в него явно входит 5a^2 и x^2
Но при наличии только этих двух слагаемых результирующий многочлен не имел бы а и х в третьей степени.
Значит, есть ещё что-то. Обозначим это нечто как z
(5a^2 +z+ x^2 )^2-(25 a^4 + 50 a^3 x + 35 a^2 x^2 + 10 a x^3 + x^4)=
z^2 + 2 x^2 z + 10 a^2 z - 50 a^3 x - 25 a^2 x^2 - 10 a x^3 =0
Решим это квадратное уравнение относительно z
корня два
z = 5 a x
и второй
z = -10 a^2 - 5 a x - 2 x^2
второй не интересен :)
ответ
(5 a^2 + 5 a x + x^2)^2 - квадрат исходного выражения
ответ: Подпишитесь на мой канал в ютубе
Объяснение:
По определению, функция является четной, если ее область определения симметрична относительно начала координат, и у(- х) = у(х). Если же у(- х) = - у(х), то такая функция будет нечетной.
Найдем область определения функции y = tg 3x. Так как tg 3x = sin 3x / cos 3x, то cos 3x ≠ 0, следовательно,
3х ≠ П/2 + Пn, n – из множества Z.
x ≠ П/6 + Пn/3, n – из множества Z.
Таким образом, область определения функции D(y): все числа, кроме x ≠ П/6 + Пn/3, n – из множества Z – симметрична относительно 0.
у(- х) = tg (3 * (- x)) = tg (- 3x) = - tg 3x = - (y(x)), следовательно, данная функция является нечетной.