правая многоугольная призма имеет ножную стенку 15 см, а диагональ боковой стороны - 25 см. найти минимальное расстояние от нижней части стопы до ее пересекающейся диагона
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Сначала сосчитаем примеры:
1/3 + 0,6 = 1/3 + 6/10= 10/30 + 18/30 = 28/30
1/4+ 0,55 = 1/4 +55/100 = 25/100 +55/100 = 80/100=8/10
1/3 + 0,6 = 1/3+55/100 = 100/300+165/300=265/300=53/60
1/4+0,6 = 1/4+6/10=5/20+12/20=17/20
Теперь приводим дроби к общ. знаменателю:
28/30=56/60
8/10=48/60
53/60
17/20=51/60
Итак, теперь мы получаем что самая большая - 56/60(1/3+0,6)
потом - 53/60(1/3+0,55)
потом - 51/60(1/4+0,6)
ну и самая маленькая - 48/60(1/4+0,55)
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так