Скорость первого рабочего v₁ деталей в минуту Скорость второго рабочего v₂ деталей в минуту Пусть в партии S деталей. Тогда (S-15)/v₁=S/(2v₂) - время, за которое 2-й сделал половину партии. S/v₁=(S-8)/v₂ - время, за которое 1-ый сделал всю партию. Если х - искомое количество деталей, то (S-x)/v₂=S/(2v₁) - время, за которое 1-ый сделал половину партии. Отсюда x=S(1-v₂/(2v₁)). Из 1-го и 2-го уравнений получим v₁/v₂=S/(S-8) и v₁/v₂=2(S-15)/S, т.е. S^2=2(S-8)(S-15). Решаем это квадратное уравнение, получаем корни 6 и 40. 6 не подходит, т.к. количество деталей больше 6. Значит S=40, откуда v₁/v₂=40/(40-8)=5/4, откуда x=40*(1-4/10)=24. ответ: 24 детали.
Допустим, возможна такая раскраска, что не образует одноцветного треугольника. Исследуем это допущение.
Рассмотрим произвольный треугольник в любом из 6-угольников, образованный тремя вершинами (через одну) 6-угольника мозаики.
Очевидно, что из трех вершин такого треугольника две будут одинакового цвета.
Пусть, это будет треугольник (123), а "одинаковый цвет" - черный. (здесь и далее см. рисунок)
Допустим, точки 1 и 2 - черного цвета. Тогда очевидно, что т.3 - белая, ибо иначе будет одноцветный треугольник (123). По той же причине, белая будет т.4 (треугольник (124) не может быть одноцветным).
Однако вследствие того что точки 3 и 4 белые, точка 5 - должна быть черной (иначе треугольник (345) будет одноцветным). Далее, во избежание одноцветного треугольника (156) точку 6 нужно делать белой.
И тут мы приходим к противоречию. Точка 7 (на рисунке означена крестиком)не может быть "покрашена" в соответствии с нашим допущением
- белый цвет даст нам одноцветный ∆(637)
- черный цвет даст нам одноцветный ∆(527)
Мы пришли к противоречию. Следовательно, предположение неверно, и при любой "раскраске" всегда найдутся три одноцветные вершины, образующие равносторонний треугольник
При выборе других 2 вершин одного цвета или белого цвета вместо черного - доказательство абсолютно аналогично.
Скорость второго рабочего v₂ деталей в минуту
Пусть в партии S деталей.
Тогда
(S-15)/v₁=S/(2v₂) - время, за которое 2-й сделал половину партии.
S/v₁=(S-8)/v₂ - время, за которое 1-ый сделал всю партию.
Если х - искомое количество деталей, то
(S-x)/v₂=S/(2v₁) - время, за которое 1-ый сделал половину партии.
Отсюда x=S(1-v₂/(2v₁)).
Из 1-го и 2-го уравнений получим
v₁/v₂=S/(S-8) и v₁/v₂=2(S-15)/S, т.е.
S^2=2(S-8)(S-15).
Решаем это квадратное уравнение, получаем корни 6 и 40.
6 не подходит, т.к. количество деталей больше 6.
Значит S=40, откуда v₁/v₂=40/(40-8)=5/4, откуда x=40*(1-4/10)=24.
ответ: 24 детали.
Объяснение:
См. на фотографии.
Допустим, возможна такая раскраска, что не образует одноцветного треугольника. Исследуем это допущение.
Рассмотрим произвольный треугольник в любом из 6-угольников, образованный тремя вершинами (через одну) 6-угольника мозаики.
Очевидно, что из трех вершин такого треугольника две будут одинакового цвета.
Пусть, это будет треугольник (123), а "одинаковый цвет" - черный. (здесь и далее см. рисунок)
Допустим, точки 1 и 2 - черного цвета. Тогда очевидно, что т.3 - белая, ибо иначе будет одноцветный треугольник (123). По той же причине, белая будет т.4 (треугольник (124) не может быть одноцветным).
Однако вследствие того что точки 3 и 4 белые, точка 5 - должна быть черной (иначе треугольник (345) будет одноцветным). Далее, во избежание одноцветного треугольника (156) точку 6 нужно делать белой.
И тут мы приходим к противоречию. Точка 7 (на рисунке означена крестиком)не может быть "покрашена" в соответствии с нашим допущением
- белый цвет даст нам одноцветный ∆(637)
- черный цвет даст нам одноцветный ∆(527)
Мы пришли к противоречию. Следовательно, предположение неверно, и при любой "раскраске" всегда найдутся три одноцветные вершины, образующие равносторонний треугольник
При выборе других 2 вершин одного цвета или белого цвета вместо черного - доказательство абсолютно аналогично.
Ч.т.д.