Коэффициент подобия по определению считается по линейным размерам .
Для периметра (сумме линейных размеров) он равен k, для площадей k^2,
для объемов k^3.Тогда периметр равен 12*4=48 см, площадь равна 9*4^2=144 кв. см
Как-то так
Объяснение:
<!--c-->
Отношение периметров двух подобных треугольников равно коэффициенту подобия.
P(ABC)P(RTG)=k20P(RTG)=19P(RTG)=9⋅20=180(см)
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
S(ABC)S(RTG)=k26S(RTG)=(19)26S(RTG)=181S(RTG)=6⋅81=486(см2)
2. По данным рисунка найдите углы треугольника ABC.
∠KBC = 112° => ∠ABC = 180-112 = 68°
∠BCD = 147° => ∠ACB = 180-147 = 33°
∠A = 180-(33+38) = 79°.
3. Используя теорему о внешнем угле треугольника, найдите ∠B ΔABC.
Теорема такова: Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом.
Внешний угол: Угол 163°
∠B + ∠A = 163°
5x+24+3x+19 = 163°
8x+24+19 = 163° => 8x+43 = 163°
8x = 163-43 => 8x = 120°
x = 120/8 => x = 15°
∠B = 5x+24 => ∠B = 15*5+24 = 99°.
4. Найти: острые углы ΔABC.
Опять же, используем теорему внешних углов: <C + <A = 150°
∠A = 90° => ∠C = 150-90 = 60°
∠B = 90-60 = 30°.
5. Найти высоту CK, если BC = 14.7.
∠COB = 90° (так как CK — высота, и перпендикулярна AB)
∠OBC = 30° => CO = CB/2 = 7.35 (По теореме 30 градусного угла прямоугольного треугольника).
Коэффициент подобия по определению считается по линейным размерам .
Для периметра (сумме линейных размеров) он равен k, для площадей k^2,
для объемов k^3.Тогда периметр равен 12*4=48 см, площадь равна 9*4^2=144 кв. см
Как-то так
Объяснение:
<!--c-->
Отношение периметров двух подобных треугольников равно коэффициенту подобия.
P(ABC)P(RTG)=k20P(RTG)=19P(RTG)=9⋅20=180(см)
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
S(ABC)S(RTG)=k26S(RTG)=(19)26S(RTG)=181S(RTG)=6⋅81=486(см2)
2. По данным рисунка найдите углы треугольника ABC.
∠KBC = 112° => ∠ABC = 180-112 = 68°
∠BCD = 147° => ∠ACB = 180-147 = 33°
∠A = 180-(33+38) = 79°.
3. Используя теорему о внешнем угле треугольника, найдите ∠B ΔABC.
Теорема такова: Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом.
Внешний угол: Угол 163°
∠B + ∠A = 163°
5x+24+3x+19 = 163°
8x+24+19 = 163° => 8x+43 = 163°
8x = 163-43 => 8x = 120°
x = 120/8 => x = 15°
∠B = 5x+24 => ∠B = 15*5+24 = 99°.
4. Найти: острые углы ΔABC.
Опять же, используем теорему внешних углов: <C + <A = 150°
∠A = 90° => ∠C = 150-90 = 60°
∠B = 90-60 = 30°.
5. Найти высоту CK, если BC = 14.7.
∠COB = 90° (так как CK — высота, и перпендикулярна AB)
∠OBC = 30° => CO = CB/2 = 7.35 (По теореме 30 градусного угла прямоугольного треугольника).
Объяснение: