Представьте в виде многочлена а) (x+y); е) (9 - у);
б) (p-q); ж) (a +12)2;
в) (b+ 3)2; 3) (15-x)2;
г) (10-с)2; и) (b 0,5);
д) (у – 9), к) (0,3-т).
Преобразуйте в многочлен:
а) (m+n)2; д) (а - 25);
б) (с - d)2; е) (40+b);
в) (x+9)2; ж) (0,2-х);
г) (8- а)2; 3) (k=0,5).
а) x2 – 81=(x-9)(x+9); в) 36x4y2 – 169c2=(6yx2-13c)(6yx2+13c);
б) y2 – 4a + 4=(y-2)2; г) (x + 1)2 – (x – 1)2=2x*2=4x.
5. Выполнить действия:
а) (4a2 + b2)(2a – b)(2a + b)=(4a2 + b2)(4a2 - b2)=16a4 - b4;
б) (b2c3 – 2a2)(b2c3 + 2a2)=b4c6 – 4a4.
1.Преобразовать в многочлен:
а) (с – 7)2=с2 – 14c+49;
б) (2m + n)2=4m2 +4mn+ n2;
в) (6x – 5)(6x + 5)=36x2 - 25;
г) (3d + 2y)(3d – 2y)=9d2-4y2.
2. Разложить на множители:
а) c2 – 25=(c – 5)(c + 5); в) 64c2d4 – 4n6=(8cd2-2n3)(8cd2+2n3);
б) m2 + 8a + 16=(m+4)2; г) (x + 2)2 - (x – 2)2=2x*4=8x
3. Упростить выражение:
(x – 5)2 – 4x(x + 3)=x2 – 10x+25- 4x2-12x=-3x2-22x+25.
4. Решите уравнение:
а) (x – 2)(x + 2) – x(x + 5) = – 8
x2-4-x2-5x+8=0
5x=4 x=4/5 или 0,8;
б) 25y2 – 16 = 0
(5y – 4)(5y + 4)=0
y=4/5 y=-4/5 .
5. Выполнить действия:
а) (4y2 + 9)(2y – 3)(2y + 3)=(4y2 + 9)(4y2 - 9)=16y4-81;
б) (7m2 – 3n3)(7m2 + 3n3)=49m4-9n6.
6*. Докажите неравенство:x2 + 16y2>8xy – 1,4.
x2 - 8xy+ 16y2 >– 1,4
(x-4y)2>– 1,4 - верно при любых x и у т.к. а2 всегда > 0
Пусть в ряду имеется х кубиков. Тогда, у крайнего левого и крайнего правого в площади поверхности учитываются 5 сторон, у остальных - 4 стороны. Находим площадь поверхности:
для крайних двух кубиков:
для остальных (х-2) кубиков:
общая:
Пусть после добавления кубиков их устало у штук. Общая площадь поверхности в этом случае будет равна . По условию она увеличилась в k раз. Получаем равенство:
Как видно и выражение и выражение при делении на 4 дает остаток 2. Однако при четном возникает противоречие:
- левая часть кратна 4, в то время как правая по-прежнему при делении на 4 дает остаток 2. Значит k не может быть четным числом, и значение 6 недопустимо.
ответ: 6