Когда график пересекает ось абсцисс в какой-то точке, координаты этой точки (х;0), все точки лежащие на оси х имеют координату "ноль" по оси у. В итоге можем представить выражение следующим образом:
ответ: 1.
2)
Опять же в точке пересечения графика с абсциссой координаты по оси у это 0, значит:
ответ: 2 и -14.
3)
1) Можно раскрыть модуль по определению и увидеть, что получиться, а можно подумать. Есть какая-то функция, которая преобразует х в у (у=х), и отрицательные и положительные значения. А если взять модуль от х, то функция будет принимать те же значения для отрицательных значениях х, что и для положительных (когда они равны по модулю, пример -2 и 2), получается когда х будет отрицательным значения по оси х будут такими же, проще говоря всё чтобы справа (когда х положительный), отзеркалится влево по оси у. Покажу пример и другие графики внизу. То есть нам надо отразить график у=х как было сказано выше.
2) Тут уже по определению, но и всё просто:
Два линейных уравнения.
4)
Если что-то пересекается в одной точке на координатной плоскости, то у них есть общие точки, то есть существует такая точка M--> (x₀;y₀), которая подходит есть в любой из функций, которые пересекаются в этой точке.
Теперь построение на общей координатной плоскости
Первая функция: Получили точки пересечения с осью у и х соответственно.
а) у= х²-2х = у= х²-2х *1 + 1 - 1 = (х-2)² -1
На координатной плоскости это парабола с вершиной (2;-1)
Ветви параболы направлены вверх (а=1>0)
Наименьшее значение функции у = -1
б) у=4х²- х+5 = 4х²-2*2х* 1/4 + 1/16 - 1/16 +5 = (2х -1/4)² + 4 15/16
На координатной плоскости это парабола с вершиной (1/4; 4 15/16)
Ветви параболы направлены вверх (а = 4 >0)
Наименьшее значение функции у = 4 15/16
Наименьшее значение функции у = -1
в) 7х-2х² = -2( х² +3,5х) = -2(х² +2х*7/4 + 49/16 - 49/16) = -2( (х +7/4)² -49/16)=
=-2(х+7/4)² + 49/8
На координатной плоскости это парабола с вершиной (-7/4;- 49/8)
Ветви параболы направлены вниз (а= -7/4 <0)
Наименьшее значение данная функция не имеет
1)
Когда график пересекает ось абсцисс в какой-то точке, координаты этой точки (х;0), все точки лежащие на оси х имеют координату "ноль" по оси у. В итоге можем представить выражение следующим образом:
ответ: 1.
2)
Опять же в точке пересечения графика с абсциссой координаты по оси у это 0, значит:
ответ: 2 и -14.
3)
1) Можно раскрыть модуль по определению и увидеть, что получиться, а можно подумать. Есть какая-то функция, которая преобразует х в у (у=х), и отрицательные и положительные значения. А если взять модуль от х, то функция будет принимать те же значения для отрицательных значениях х, что и для положительных (когда они равны по модулю, пример -2 и 2), получается когда х будет отрицательным значения по оси х будут такими же, проще говоря всё чтобы справа (когда х положительный), отзеркалится влево по оси у. Покажу пример и другие графики внизу. То есть нам надо отразить график у=х как было сказано выше.
2) Тут уже по определению, но и всё просто:
Два линейных уравнения.
4)
Если что-то пересекается в одной точке на координатной плоскости, то у них есть общие точки, то есть существует такая точка M--> (x₀;y₀), которая подходит есть в любой из функций, которые пересекаются в этой точке.
Теперь построение на общей координатной плоскости
Первая функция: Получили точки пересечения с осью у и х соответственно.
Вторая функция:
Третья функция:
ответ: -1.