В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
МегаМозги2005
МегаМозги2005
28.02.2021 14:05 •  Алгебра

При каких значениях a и b возможно равенство? sinx=(a+b)/(a-b), где a не равно b.

Показать ответ
Ответ:
Синус может изменяться от -1 до 1. Значит, можно составить следующее неравенство:
-1 \leq \frac{a+b}{a-b} \leq 1 \\
Можно домножить его на a-b, так как условие позволяет. Но нужно следить за знаками:
\left \{ {{a-b\ \textgreater \ 0} \atop {b-a \leq a+b \leq a-b}} \right. \\ \left \{ {{a\ \textgreater \ b} \atop { \left \{ {{a+b \geq b-a} \atop {a+b \leq a-b}} \right. }} \right. \\ \left \{ {{a\ \textgreater \ b} \atop { \left \{ {{a \geq 0} \atop {b \leq 0}} \right. }} \right.
На рисунке 1 рассмотрена эта ситуация. Т. е. подходят всё точки в закрашенной области.
Рассмотрим другой случай:
\left \{ {{a-b\ \textless \ 0} \atop {b-a \geq a+b \geq a-b}} \right. \\ \left \{ {{a\ \textless \ b} \atop { \left \{ {{a+b \leq b-a} \atop {a+b \geq a-b}} \right. }} \right. \\ \left \{ {{a\ \textless \ b} \atop { \left \{ {{a \leq 0} \atop {b \geq 0}} \right. }} \right.
На рисунке 1 рассмотрена эта ситуация. Снова же, подходят всё точки в закрашенной области.

Из этих двух рисунков можно сделать вывод, что равенство возможно в ситуациях, когда a и b имеют разные знаки.
При каких значениях a и b возможно равенство? sinx=(a+b)/(a-b), где a не равно b.
При каких значениях a и b возможно равенство? sinx=(a+b)/(a-b), где a не равно b.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота