(x+p)·(x³ - x² - x - 1) ≡ x·( x³ - x² - x - 1) + p·( x³ - x² - x - 1) ≡
≡ x⁴ - x³ - x² - x + p·x³ - p·x² - p·x - p ≡
≡ x⁴ + (p - 1)·x³ + (-p-1)·x² + (-1-p)·x - p
a) -p-1 = 2
p = -1-2 = -3.
б) 1 + (p-1) + (-p-1) + (-1-p) - p = -2p - 2 = 0,
-2p - 2 = 0,
2p = -2,
p = -1.
(x+p)·(x³ - x² - x - 1) ≡ x·( x³ - x² - x - 1) + p·( x³ - x² - x - 1) ≡
≡ x⁴ - x³ - x² - x + p·x³ - p·x² - p·x - p ≡
≡ x⁴ + (p - 1)·x³ + (-p-1)·x² + (-1-p)·x - p
a) -p-1 = 2
p = -1-2 = -3.
б) 1 + (p-1) + (-p-1) + (-1-p) - p = -2p - 2 = 0,
-2p - 2 = 0,
2p = -2,
p = -1.