1. При каких значениях а уравнение sin ^2 x - (a+3) sin x + 3a = 0 не имеет решений ?
2. Решите уравнение cos ^2 x + cos 4x = a , если одно из его решений п/3
Участник Знаний
1. Квадратное уравнение не имеет решений, если его дискриминант отрицателен.
\sin^2x-(a+3)\sin x+3a=0\\\sin x=t,\;\sin^2x=t^2,\;-1\leq t\leq1\\t^2-(a+3)t+3a=0\\D=(-(a+3))^2-4\cdot1\cdot3a=(a+3)^2-12a=a^2-6a+9=(a-3)^2\\(a-3)^2
Последнее неравенство не имеет решений. Значит, исходное уравнение имеет решение (-ия) при любых а.
2.\;\cos^2x+\cos4x=a\\\cos4x=8\cos^4x-8\cos^2x+1\\\cos^2x+8\cos^4x-8\cos^2x+1=a\\8\cos^4x-7\cos^2x+(1-a)=0\\\cos^2x=t,\cos^4x=t^2,\;0\leq t\leq1\\8t^2-7t+(1-a)=0\\D=49-4\cdot8\cdot(1-a)=49-32+32a=17+32a\\t_{1,2}=\frac{7\pm\sqrt{17+32a}}{16}
Один из корней п/3, значит x=\frac\pi3\Rightarrow\cos x=\frac12\Rightarrow\cos^2x=t=\frac14
\frac{7\pm\sqrt{17+32a}}{16}=\frac14\Rightarrow\begin{cases}\frac{7+\sqrt{17+32a}}{16}=\frac14\\\frac{7-\sqrt{17+32a}}{16}=\frac14\end{cases}\Rightarrow\begin{cases}{7+\sqrt{17+32a}}=4\\{7-\sqrt{17+32a}}=4\end{cases}\Rightarrow\\
\Rightarrow\begin{cases}\sqrt{17+32a}=-3\\\sqrt{17+32a}=3\end{cases}\Rightarrow 17+32a=9\Rightarrow32a=-8\Rightarrow a=-\frac14=-0,25\\t_1=\frac{7+\sqrt{17-32\cdot0,25}}{16}=\frac{7+\sqrt{9}}{16}=\frac{10}{16}=\frac58\\t_2=\frac{7-\sqrt{17-32\cdot0,25}}{16}=\frac{7-\sqrt{9}}{16}=\frac{4}{16}=\frac14\\\cos^2x=\frac14\Rightarrow\cos x=\frac12\Rightarrow x=\frac\pi3+2\pi n,\;n\in\mathbb{Z}\\\cos^2x=\frac58\Rightarrow\cos x=\sqrt{\frac58}\Rightarrow x=\arccos\left(\sqrt{\frac58}\right)+2\pi n,\;n\in\mathbb{Z}
Объяснение:
№1
2) -6 + 4 = -2
3) 6x4 - 30x2 + 36x
4) 12x2 + 4x - 40
5) 2y3 + 8y2 - 2y - 24
№2
1) m(-24 * 5m)
2) -2a2 + 25a - 41
№3
1) (x2 - 3)(x3 + 4)
2) (3x - 4)(9x2 + 2)
№4
При х = 1 и у = 0,45 равно - 4,7
№5
1) x₁ = 0, x₂ = - 1/2
2) x₁ = 0, x₂ = 7
2) (7x2 - 6x - 6) - (7x2 - 6x - 4) = -6x - 6 + 6x + 4 = -6 + 4 = -2
3) 6x * (x3 - 5x + 6) = 6x4 - 6x * 5x + 6x * 6 = 6x4 - 30x2 + 6x * 6 = 6x4 - 30x2 + 36x
4) (3х – 5)(4х + 8) = 12x2 + 24x - 20x - 40 = 12x2 + 4x - 40
5) (2у + 6)(у2 + у - 4) = 2y3 + 2y2 - 8y + 6y2 + 6y - 24 = 2y3 + 8y2 - 2y - 24
1) 3m(2 + 5m) – 5m(6 + 2m) = m(6 + 15 - 30 - 10m) = m(-24 + 15m - 10m) = m(-24 * 5m)
2) 4(3a - 5) – (a – 3)(2a – 7) = 12a-20-(2a2 - 7a - 6a + 21) = 12a - 20 - 2a2 +13a - 21 = 25a - 41 - 2a2 = -2a2 + 25a - 41
№3 (по формуле x2-3)
1) х5 - 3х3 + 4х2 - 12 = (x2 - 3)(x3 + 4)
2) 27х3 - 36х2 + 6х - 8 = (3x - 4)(9x2 + 2)
18ху + 6х – 24у – 8 при х = 1 и у = 0,45
18ху + 6х – 24у – 8 = 2(3x*(3y+1) - 4(3y+1)) = 2(3y+1)(3x-4)
Если x = 1, y = 0,45, то 2(3*0,45+1)(3*1-4) = - 4,7
1) 12х2 + 6х = 0
6x(2x+1) = 0
x(2x+1) = 0
x = 0
2x + 1 = 0
x = - 1/2
ответ: x₁ = 0, x₂ = - 1/2
2) 35х - 5х2 = 0
5x(7-x) = 0
x(7-x) = 0
7 - x = 0
x = 7
ответ: x₁ = 0, x₂ = 7
1. При каких значениях а уравнение sin ^2 x - (a+3) sin x + 3a = 0 не имеет решений ?
2. Решите уравнение cos ^2 x + cos 4x = a , если одно из его решений п/3
Участник Знаний
1. Квадратное уравнение не имеет решений, если его дискриминант отрицателен.
\sin^2x-(a+3)\sin x+3a=0\\\sin x=t,\;\sin^2x=t^2,\;-1\leq t\leq1\\t^2-(a+3)t+3a=0\\D=(-(a+3))^2-4\cdot1\cdot3a=(a+3)^2-12a=a^2-6a+9=(a-3)^2\\(a-3)^2
Последнее неравенство не имеет решений. Значит, исходное уравнение имеет решение (-ия) при любых а.
2.\;\cos^2x+\cos4x=a\\\cos4x=8\cos^4x-8\cos^2x+1\\\cos^2x+8\cos^4x-8\cos^2x+1=a\\8\cos^4x-7\cos^2x+(1-a)=0\\\cos^2x=t,\cos^4x=t^2,\;0\leq t\leq1\\8t^2-7t+(1-a)=0\\D=49-4\cdot8\cdot(1-a)=49-32+32a=17+32a\\t_{1,2}=\frac{7\pm\sqrt{17+32a}}{16}
Один из корней п/3, значит x=\frac\pi3\Rightarrow\cos x=\frac12\Rightarrow\cos^2x=t=\frac14
\frac{7\pm\sqrt{17+32a}}{16}=\frac14\Rightarrow\begin{cases}\frac{7+\sqrt{17+32a}}{16}=\frac14\\\frac{7-\sqrt{17+32a}}{16}=\frac14\end{cases}\Rightarrow\begin{cases}{7+\sqrt{17+32a}}=4\\{7-\sqrt{17+32a}}=4\end{cases}\Rightarrow\\
\Rightarrow\begin{cases}\sqrt{17+32a}=-3\\\sqrt{17+32a}=3\end{cases}\Rightarrow 17+32a=9\Rightarrow32a=-8\Rightarrow a=-\frac14=-0,25\\t_1=\frac{7+\sqrt{17-32\cdot0,25}}{16}=\frac{7+\sqrt{9}}{16}=\frac{10}{16}=\frac58\\t_2=\frac{7-\sqrt{17-32\cdot0,25}}{16}=\frac{7-\sqrt{9}}{16}=\frac{4}{16}=\frac14\\\cos^2x=\frac14\Rightarrow\cos x=\frac12\Rightarrow x=\frac\pi3+2\pi n,\;n\in\mathbb{Z}\\\cos^2x=\frac58\Rightarrow\cos x=\sqrt{\frac58}\Rightarrow x=\arccos\left(\sqrt{\frac58}\right)+2\pi n,\;n\in\mathbb{Z}
Объяснение:
№1
2) -6 + 4 = -2
3) 6x4 - 30x2 + 36x
4) 12x2 + 4x - 40
5) 2y3 + 8y2 - 2y - 24
№2
1) m(-24 * 5m)
2) -2a2 + 25a - 41
№3
1) (x2 - 3)(x3 + 4)
2) (3x - 4)(9x2 + 2)
№4
При х = 1 и у = 0,45 равно - 4,7
№5
1) x₁ = 0, x₂ = - 1/2
2) x₁ = 0, x₂ = 7
Объяснение:
№1
2) (7x2 - 6x - 6) - (7x2 - 6x - 4) = -6x - 6 + 6x + 4 = -6 + 4 = -2
3) 6x * (x3 - 5x + 6) = 6x4 - 6x * 5x + 6x * 6 = 6x4 - 30x2 + 6x * 6 = 6x4 - 30x2 + 36x
4) (3х – 5)(4х + 8) = 12x2 + 24x - 20x - 40 = 12x2 + 4x - 40
5) (2у + 6)(у2 + у - 4) = 2y3 + 2y2 - 8y + 6y2 + 6y - 24 = 2y3 + 8y2 - 2y - 24
№2
1) 3m(2 + 5m) – 5m(6 + 2m) = m(6 + 15 - 30 - 10m) = m(-24 + 15m - 10m) = m(-24 * 5m)
2) 4(3a - 5) – (a – 3)(2a – 7) = 12a-20-(2a2 - 7a - 6a + 21) = 12a - 20 - 2a2 +13a - 21 = 25a - 41 - 2a2 = -2a2 + 25a - 41
№3 (по формуле x2-3)
1) х5 - 3х3 + 4х2 - 12 = (x2 - 3)(x3 + 4)
2) 27х3 - 36х2 + 6х - 8 = (3x - 4)(9x2 + 2)
№4
18ху + 6х – 24у – 8 при х = 1 и у = 0,45
18ху + 6х – 24у – 8 = 2(3x*(3y+1) - 4(3y+1)) = 2(3y+1)(3x-4)
Если x = 1, y = 0,45, то 2(3*0,45+1)(3*1-4) = - 4,7
№5
1) 12х2 + 6х = 0
6x(2x+1) = 0
x(2x+1) = 0
x = 0
2x + 1 = 0
x = 0
x = - 1/2
ответ: x₁ = 0, x₂ = - 1/2
2) 35х - 5х2 = 0
5x(7-x) = 0
x(7-x) = 0
x = 0
7 - x = 0
x = 0
x = 7
ответ: x₁ = 0, x₂ = 7