Чтобы найти вероятность того, что точка,брошенная в круг, попадёт в треугольник, надо найти отношение площади правильного треугольника к площади окружности
S(треуг)=(а:2*корень(3))/ S 4
S(окруж)=Pі *r^2
Мы знаем связь между стороной правильного треугольника и радиусом описаной окружности:
r=a/корень3
Тогда, вероятность = S(треуг)/ S(окруж)= ((а:2*корень(3))/ S 4) / (Pі *r^2) = ((а:2*корень(3))/ S 4) * (Pі *а^2) /3=(3*корень3)/ 4Pі
Первую ещё не придумала, а вот вторая:
Чтобы найти вероятность того, что точка,брошенная в круг, попадёт в треугольник, надо найти отношение площади правильного треугольника к площади окружности
S(треуг)=(а:2*корень(3))/ S 4
S(окруж)=Pі *r^2
Мы знаем связь между стороной правильного треугольника и радиусом описаной окружности:
r=a/корень3
Тогда, вероятность = S(треуг)/ S(окруж)= ((а:2*корень(3))/ S 4) / (Pі *r^2) = ((а:2*корень(3))/ S 4) * (Pі *а^2) /3=(3*корень3)/ 4Pі
Если надо, можно примерно вищитать:
(3*корень3)/ 4Pі = 3*1,73/4*3,14=5,19/12,56=0,41
ответ:0,41
(3х+1) / (х+1).
Объяснение:
(6х² - 7х - 3)/(2х² - х - 3) =
1) Найдём корни квадратных трёхчленов и каждый из них разложим на множители:
a) 6х² - 7х - 3 = 6•( х - 3/2 )( x + 1/3) = 2•( х - 3/2 ) • 3•( x + 1/3) = (2x-3)(3x+1).
D = 49 - 4•6•(-3) = 49+72 = 121;
x1 = (7+11)/(2•6) = 3/2;
x2 = (7-11)/(2•6) = - 4/12 = - 1/3.
б) 2х² - х - 3 = 2•(х-3/2)(х+1) = (2х-3)(х+1).
D = 1 - 4•2•(-3) = 25;
x1 = (1+5)/(2•2) = 3/2;
x2 = (1-5)/(2•2) = - 4/4 = - 1.
2) Выполним сокращение дроби:
(6х² - 7х - 3)/(2х² - х - 3) = (2x-3)(3x+1) / (2х-3)(х+1) = (3х+1) / (х+1).