Объяснение:
Пусть они выехали в x час.
Значит, они ехали (16 -x) час. со скоростью v км/час, проехав расстояние
s = v*(16-x) км.
Если бы скорость была на 25% больше, т.е. 1,25v, то они ехали бы (14,5-x) час., проехав то же расстояние s = 1,25v*(14,5-x).
Приравняем правые части в выражениях для s.
v*(16-x) = 1,25v*(14,5-x)
Решим относительно x, предварительно сократив v.
16-x = 1,25*(14,5-x)
16-x = 18,125 - 1,25x
1,25x -x=18,125-16
0,25x = 2,125
x= 2,125/0,25
x =8,5
ответ: выехали из дома в 8 ч. 30 мин.
Для решения запишем формулу бинома Ньютона:
Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение .
Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение .
Рассмотрим многочлен , где:
Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.
Для многочлена :
- степень определяется выражением , то есть степень равна 84
- свободный член равен
- степень определяется выражением , то есть степень равна 6
Наконец, для многочлена получим:
- степень определяется выражением , то есть степень равна 90
Сумма степени и свободного члена многочлена :
ответ: 98
Объяснение:
Пусть они выехали в x час.
Значит, они ехали (16 -x) час. со скоростью v км/час, проехав расстояние
s = v*(16-x) км.
Если бы скорость была на 25% больше, т.е. 1,25v, то они ехали бы (14,5-x) час., проехав то же расстояние s = 1,25v*(14,5-x).
Приравняем правые части в выражениях для s.
v*(16-x) = 1,25v*(14,5-x)
Решим относительно x, предварительно сократив v.
16-x = 1,25*(14,5-x)
16-x = 18,125 - 1,25x
1,25x -x=18,125-16
0,25x = 2,125
x= 2,125/0,25
x =8,5
ответ: выехали из дома в 8 ч. 30 мин.
Для решения запишем формулу бинома Ньютона:
Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение .
Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение .
Рассмотрим многочлен , где:
Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.
Для многочлена :
- степень определяется выражением , то есть степень равна 84
- свободный член равен
Для многочлена :
- степень определяется выражением , то есть степень равна 6
- свободный член равен
Наконец, для многочлена получим:
- степень определяется выражением , то есть степень равна 90
- свободный член равен
Сумма степени и свободного члена многочлена :
ответ: 98