Равенство не сходится. Либо у Вас в задании ошибка, либо же оно сходиться действительно не должно. Распишу свой ход мыслей. При решении использовал формулы суммы синусов и разности косинусов разных углов. Ваш Пример имеет вид:
Для удобства, перенес косинус 55 градусов в правую часть равенства. Теперь нам остается доказать, что сумма синусов 25 и 35 градусов равна косинусу 55 градусов. Существует такая формула суммы синусов:
Теперь запишем сумму наших синусов:
Где синус 30 градусов это 1/2, либо 0,5. Также, по свойству косинуса: Cos(-5 градусов) равен cos(5 градусов). То есть, мы получаем:
У нас должно было получиться равенство, но как видите, cos(5 градусов) никак не может быть равен cos(55 градусов). Для надежности, переносим косинус 55 градусов в левую сторону равенства, и используем формулу для разности косинусов разных углов. Формула имеет вид:
Применим для нашего случая:
В итоге, мы получили синус 25 градусов, который никак не может быть равен нулю.
Использование подстановки в пример чего-либо берет свое начало в Месопотамии в 4 тысячелетии до нашей эры. С целью сокрытия информации о рецепте производства глазури для гончарных изделий автор заменял часть слов на цифры и клинописные знаки. Применение шифров простой замены было затруднено большим количеством знаков, используемых для идеографического письма. С появлением фонетического алфавита шифрование сильно упростилось и получило распространение в различных странах Древнего мира. Римский император Гай Юлий Цезарь при написании секретных сообщений смещал каждую букву алфавита на 3 позиции. Данный вид шифров подстановки в последствии назвали его именем, шифр Цезаря. Другой не менее известный шифр Античности, Атбаш, применялся в Библии для создания скрытых посланий. Каждая буква слова заменялась ее зеркальным отражением в алфавите.
Распишу свой ход мыслей. При решении использовал формулы суммы синусов и разности косинусов разных углов.
Ваш Пример имеет вид:
Для удобства, перенес косинус 55 градусов в правую часть равенства.
Теперь нам остается доказать, что сумма синусов 25 и 35 градусов равна косинусу 55 градусов.
Существует такая формула суммы синусов:
Теперь запишем сумму наших синусов:
Где синус 30 градусов это 1/2, либо 0,5.
Также, по свойству косинуса: Cos(-5 градусов) равен cos(5 градусов).
То есть, мы получаем:
У нас должно было получиться равенство, но как видите, cos(5 градусов) никак не может быть равен cos(55 градусов).
Для надежности, переносим косинус 55 градусов в левую сторону равенства, и используем формулу для разности косинусов разных углов. Формула имеет вид:
Применим для нашего случая:
В итоге, мы получили синус 25 градусов, который никак не может быть равен нулю.