Дан прямоугольный треугольник. Площадь треугольника равна половине произведения высоты на длину стороны, проведенную к этой стороне(0,5*a*h). В нашем чертеже это будет выглядеть, как: 1/2*AC*BC. Чтобы найти сторону АС воспользуемся теоремой Пифагора. По теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов треугольника. Катеты - стороны, образующие прямой угол (АС, ВС). Гипотенуза - АВ. Составим уравнение: AB^2=AC^2+BC^2. AC=√(AB^2-BC^2). АС=√(400-256) АС=√144 АС=12. Найдем площадь S=1/2*12*16=96. ответ: 96 сантиметров
составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.
В нашем чертеже это будет выглядеть, как:
1/2*AC*BC.
Чтобы найти сторону АС воспользуемся теоремой Пифагора.
По теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов треугольника.
Катеты - стороны, образующие прямой угол (АС, ВС). Гипотенуза - АВ.
Составим уравнение:
AB^2=AC^2+BC^2.
AC=√(AB^2-BC^2).
АС=√(400-256)
АС=√144
АС=12.
Найдем площадь
S=1/2*12*16=96.
ответ: 96 сантиметров
Объяснение:
Квадратная таблица
A=(a11a21a12a22)
составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
detA=∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣=
a11a22a33+a21a32a13+a12a23a31−a13a22a31−a12a21a33−a23a32a11.
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.