Разделите с остатком многочлен `F(x)` на многочлен `G(x)`. Запишите равенство `F(x)=p(x)*G(x)+r(x)`, где `p(x)` - частное, а `r(x)` - остаток от деления. Проверьте справедливость этого равенства, раскрывая скобки и приводя подобные слагаемые в правой части.
а)(1) `F(x)=x^3+x^2+1`, `G(x)=x^4`;
б)(1) `F(x)=x^5+x-1`, `G(x)=3x^5+x^2-2`;
в)(2) `F(x)=2x^4-3x^3+4x^2-5x+6`, `G(x)=x^2-3x`.
Составьте предложение, выполнив предварительно ряд действий (слова предложения записываются по мере выполнения задания).
1.Из предложения Мы любили встречать рассвет на речке взять дополнение.
2.Добавить сказуемое из предложения Дождь застал нас врасплох.
3.Существительное, стоящее в именительном падеже в предложении Туристы с трудом преодолели подъем, употребить в родительном падеже множественного числа.
4.Из предложения На нашем пути лежало бревно взять обстоятельство места, выраженное существительным с предлогом.
5.Из предложения Над рекой расстилался туман взять существительное, выступающее в роли обстоятельства места, употребить в дательном падеже единственного числа с предлогом К.
Объяснение:
Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения а. По определению модуля числа
По теореме Виета при .
Поэтому .
Знаки квадратного трёхчлена: + + + (2) - - - (3) + + +
В этом случае получаем два решения (при x>12 и при х<12) .
А если , то решений уравнение не будет иметь,так как модуль не может принимать отрицательные значения. Это будет в случае .
ответ: уравнение имеет одно решение при а=2 и а=3;
уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ;
уравнение не имеет решений при а∈(2,3) .