Это вид уравнения окружности, который можно использовать для определения центра и радиуса окружности.
(
x
−
h
)
2
+
y
k
=
r
Сопоставьте параметры окружности со значениями в ее каноническом виде. Переменная
представляет радиус окружности,
представляет сдвиг по оси X от начала координат, а
представляет сдвиг по оси Y от начала координат.
5
1
Центр окружности находится в точке
,
.
Центр:
Эти величины представляют важные значения для построения графика и анализа окружности.
Радиус:
Строим гиперболу и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)
Область определения:
Подставим у=кх в упрощенную функцию.
(*)
Очевидно, что при k=0 уравнение (*) решений не будет иметь.
1) Если x>0, то и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).
2) Если x<0, то и при k<0 это уравнение решений не имеет.
Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.
Подставим теперь , имеем
Итак, при k=0 и k=±6.25 графики не будут иметь общих точек
Это вид уравнения окружности, который можно использовать для определения центра и радиуса окружности.
(
x
−
h
)
2
+
(
y
−
k
)
2
=
r
2
Сопоставьте параметры окружности со значениями в ее каноническом виде. Переменная
r
представляет радиус окружности,
h
представляет сдвиг по оси X от начала координат, а
k
представляет сдвиг по оси Y от начала координат.
r
=
2
h
=
5
k
=
−
1
Центр окружности находится в точке
(
h
,
k
)
.
Центр:
(
5
,
−
1
)
Эти величины представляют важные значения для построения графика и анализа окружности.
Центр:
(
5
,
−
1
)
Радиус:
2