Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
9x²- 4y² = 5.
(3х)²-(2у)²=5
(3х-2у) *(3х+2у) = 5
5 - число простое.
Произведение его множителей имеет 4 варианта из целых чисел:
5 = 1 · 5
5 = 5 · 1
5 = (-1) · (-5)
5 = (-5) · (-1)
Рассмотрим каждый из вариантов.
1 вариант.
(3х-2у) *(3х+2у) = 1*5
Получаем систему:
{3х-2у = 1
{3х+2у = 5
Сложим эти уравнения и получим:
3х-2у+3х+2у=1+5
6х = 6
х=1
Подставим х=1 во второе уравнение 3х+2у=5 и найдём у.
3*1+2у =5
2у=5-3
у=2 : 2
у=1
Получаем первую пару целых чисел:
х=1
у=1
2 вариант
(3х-2у) *(3х+2у) = 5*1
Получаем систему:
{3х-2у = 5
{3х+2у = 1
Сложим эти уравнения и получим:
6х=6
х=1
Подставим х=1 во второе уравнение 3х+2у=5 и найдём у.
3*1+2у=1
2у=1-3
2у = -2
Получаем вторую пару целых чисел:
х=1
у=-1
3 вариант
(3х-2у) *(3х+2у) = (-1) · (-5)
Получим систему:
{3х-2у = -1
{3х+2у = -5
Сложим эти уравнения и получим:
6х = -6
х=-1
Подставим х= -1 во второе уравнение 3х+2у=5 и найдём у.
3*(-1) +2у = -5
2у=-5+3
2у=-2
у=-1
Получаем третью пару целых чисел:
х = -1
у = -1
4 вариант
(3х-2у) *(3х+2у) = (-5) · (-1)
Получим систему:
{3х-2у = -5
{3х+2у = -1
Сложим эти уравнения и получим:
6х = -6
х=-1
Подставим х= -1 во второе уравнение 3х+2у=5 и найдём у.
3*(-1)+2у = -1
2у=3-1
у=1
Получаем четвёртую пару целых чисел:
х = -1
у = 1
ответ: (1; 1), (1; -1); (-1; -1); (-1; 1)
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.