Решим первое неравенство как квадратное уравнение:
х²-6х+8=0
х₁,₂=(6±√36-32)/2
х₁,₂=(6±√4)/2
х₁,₂=(6±2)/2
х₁=4/2=2
х₂=8/2=4
Смотрим на уравнение. Уравнение параболы.
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 2 и х=4. По графику ясно видно, что у<=0 (как в неравенстве) между значений х, то есть, решения неравенства в интервале х∈ [2, 4].
Значения х= 2 и х=4 входят в число решений неравенства, скобка квадратная.
Решим второе неравенство.
3x-8>=0
3x>=8
x>=8/3
х∈[8/3, +∞), решение второго неравенства.
Неравенство нестрогое, скобка квадратная.
Теперь на числовой оси нужно отметить оба интервала и найти пересечение решений, которое подходит двум неравенствам.
Отмечаем на числовой оси числа 2; 8/3 (≈2,7); 4.
Штриховка от 2 до 4, от 4 до 2; от 8/3 (2,7) до + бесконечности.
Пересечение [8/3, 4], это и есть решение системы неравенств.
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на 2:
2х+4у=12
3х-4у=8
Складываем уравнения:
2х+3х+4у-4у=12+8
5х=20
х=20/5
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
2х+4у=12
4у=12-2х
4у=12-2*4
4у=12-8
4у=4
у=1
Решение системы уравнений (4; 1)
2)5х+2у= -9
-5у+4х=6
Первое уравнение умножить на 2,5:
12,5х+5у= -22,5
-5у+4х=6
Складываем уравнения:
12,5х+4х+5у-5у= -22,5+6
16,5х= -16,5
х= -16,5/16,5
х= -1
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
[8/3, 4], решение системы неравенств.
Объяснение:
Решить систему неравенств:
х²-6х+8<=0
3x-8>=0
Решим первое неравенство как квадратное уравнение:
х²-6х+8=0
х₁,₂=(6±√36-32)/2
х₁,₂=(6±√4)/2
х₁,₂=(6±2)/2
х₁=4/2=2
х₂=8/2=4
Смотрим на уравнение. Уравнение параболы.
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 2 и х=4. По графику ясно видно, что у<=0 (как в неравенстве) между значений х, то есть, решения неравенства в интервале х∈ [2, 4].
Значения х= 2 и х=4 входят в число решений неравенства, скобка квадратная.
Решим второе неравенство.
3x-8>=0
3x>=8
x>=8/3
х∈[8/3, +∞), решение второго неравенства.
Неравенство нестрогое, скобка квадратная.
Теперь на числовой оси нужно отметить оба интервала и найти пересечение решений, которое подходит двум неравенствам.
Отмечаем на числовой оси числа 2; 8/3 (≈2,7); 4.
Штриховка от 2 до 4, от 4 до 2; от 8/3 (2,7) до + бесконечности.
Пересечение [8/3, 4], это и есть решение системы неравенств.
1)Решение системы уравнений (4; 1);
2)Решение системы уравнений (-1; -2).
Объяснение:
Решить систему уравнений сложения:
1)х+2у=6
3х-4у=8
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на 2:
2х+4у=12
3х-4у=8
Складываем уравнения:
2х+3х+4у-4у=12+8
5х=20
х=20/5
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
2х+4у=12
4у=12-2х
4у=12-2*4
4у=12-8
4у=4
у=1
Решение системы уравнений (4; 1)
2)5х+2у= -9
-5у+4х=6
Первое уравнение умножить на 2,5:
12,5х+5у= -22,5
-5у+4х=6
Складываем уравнения:
12,5х+4х+5у-5у= -22,5+6
16,5х= -16,5
х= -16,5/16,5
х= -1
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
5х+2у= -9
2у= -9-5х
2у= -9-5*(-1)
2у= -9+5
2у= -4
у= -4/2
у= -2
Решение системы уравнений (-1; -2)