Для перехода к последней матрице разделили 3 строку на (-5) , а 4 строку на 5 .
Ранг матрицы системы ( та, что записана до вертикальной черты, размером 4×4 ), равен 3, так как две последние строки равны, а значит одну из строк можно вычеркнуть. Ранг расширенной матрицы ( та, что записана без учёта вертикальной черты, размером 4×5 ) равен 4, так как2 последние строки различны. Ранги указанных матриц НЕ равны, то есть условия теоремы Кронекера-Капелли не выполняются, значит система НЕ ИМЕЕТ РЕШЕНИЙ, то есть система НЕСОВМЕСТНА .
Общее решение системы можно было бы записать лишь в случае, если бы система была совместна и не определена .
35 км/ч
Объяснение:
Дано:
S₁ = 35 км
S₂ = 34 км
t = 2 ч
Vр = 1 км/ч
V - ?
1)
Заметим, что собственная скорость лодки равна скорости ее движения по озеру:
V₁ = V
Время, затраченное на движение по озеру:
t₁ = S₁ / V₁
или
t₁ = S₁ / V.
2)
Время, затраченное на движение по реке.
Заметим, что река впадает в озеро, а это значит, что лодка двигалась против течения: V₂ = V - Vp
t₂ = S₂ / V₂ или
t₂ = S₂ / (V - Vp)
3)
Общее время движения:
t = t₁ + t₂
или
t = S₁ / V₁ + S₂ / (V - Vp)
Подставляем данные и решаем уравнение:
2 = 35 / V + 34 / (V - 1)
2·V·(V-1) = 35·(V-1) + 34·V
2·V² - 2·V = 35·V - 35 +34·V
2·V² - 71·V + 35 = 0
Решая это квадратное уравнение, получаем:
V = (71-69)/4 = 0,5 км/ч (слишком маленькая скорость...)
V = (71+69)/4 = 35 км/ч
Для удобства вычислений, поменяем местами строчки системы ЛНУ .
1 строку * 7 - 5*2 строку ; 1стр*3 - 5*3стр ; 1стр*2-5*4стр
2стр - 4*3стр ; 3 стр + 4стр
Для перехода к последней матрице разделили 3 строку на (-5) , а 4 строку на 5 .
Ранг матрицы системы ( та, что записана до вертикальной черты, размером 4×4 ), равен 3, так как две последние строки равны, а значит одну из строк можно вычеркнуть. Ранг расширенной матрицы ( та, что записана без учёта вертикальной черты, размером 4×5 ) равен 4, так как2 последние строки различны. Ранги указанных матриц НЕ равны, то есть условия теоремы Кронекера-Капелли не выполняются, значит система НЕ ИМЕЕТ РЕШЕНИЙ, то есть система НЕСОВМЕСТНА .
Общее решение системы можно было бы записать лишь в случае, если бы система была совместна и не определена .