Разложите на множители с-9 где с больше или равно нулю 10-u где u больше или равно нулю у-d где d и у больше или равно нулю 49w-81d где w и d больше нуля
1.Пусть х (м/ч)-скорость улитки при подъеме, тогда х+2 (м/ч)-скорость улитки при спуске. 2. (Вспоминаем физику время движения равно пройденное расстояние делить на время), тогда 6/х (ч) - время подъема, 5/(х+2) (ч)- время спуска. Известно, что всего на свои передвижения (время спуска+время подъема) улитка затратила 14 часов. Составим и решим уравнение: 6/х + 5/(х+2)=14 (переносим 14 в другую часть уравнения и приведем к общему знаменателю) 6/х + 5/(х+2) - 14=0 (общий знаменатель х*(х+2)) (6*(х+2) +5*х - 14*х*(х+2))/(х*(х+2))=0 ( далее вспоминаем равенство 0 дроби, это когда числитель равен 0,а знаменатель от нуля отличен, далее я буду рассматривать только числитель для простоты, а знаменатель писать не буду, он равен нулю, если х=0 или =-2, так что если получатся такие корни, мы их исключим) 3.Уравнение 6х+12 +5х-14х²-28х=0 -14х² -17х+12=0 (умножим на -1, чтобы перед х² стоял положительный коэффициент) 14х² +17х-12=0, а =14, b=17, c=-12 Определяем дискриминант D=b²-4*a*c=17²-4*14*(-12)=289+672=961, определяем корни x1=(-b+√D)/2a=(-17+31)/28=0,5 x2=(-b-√D)/2a=(-17-31)/28=-48/28=-12/7 Но данный корень х2=-12/7 не подходит во физическому смыслу задачи (скорость не может быть отрицательной) Тогда нам подходит только х=0,5 - скорость при подъеме, тогда 0,5+2=2,5 м/ч - скорость при спуске, тогда 6/0,5=12 часов - время подъема 5/2,5=2 часа - время спуска
2. (Вспоминаем физику время движения равно пройденное расстояние делить на время),
тогда 6/х (ч) - время подъема, 5/(х+2) (ч)- время спуска.
Известно, что всего на свои передвижения (время спуска+время подъема) улитка затратила 14 часов. Составим и решим уравнение:
6/х + 5/(х+2)=14 (переносим 14 в другую часть уравнения и приведем к общему знаменателю)
6/х + 5/(х+2) - 14=0 (общий знаменатель х*(х+2))
(6*(х+2) +5*х - 14*х*(х+2))/(х*(х+2))=0 ( далее вспоминаем равенство 0 дроби, это когда числитель равен 0,а знаменатель от нуля отличен, далее я буду рассматривать только числитель для простоты, а знаменатель писать не буду, он равен нулю, если х=0 или =-2, так что если получатся такие корни, мы их исключим)
3.Уравнение 6х+12 +5х-14х²-28х=0
-14х² -17х+12=0 (умножим на -1, чтобы перед х² стоял положительный коэффициент)
14х² +17х-12=0,
а =14, b=17, c=-12
Определяем дискриминант D=b²-4*a*c=17²-4*14*(-12)=289+672=961, определяем корни x1=(-b+√D)/2a=(-17+31)/28=0,5
x2=(-b-√D)/2a=(-17-31)/28=-48/28=-12/7
Но данный корень х2=-12/7 не подходит во физическому смыслу задачи (скорость не может быть отрицательной)
Тогда нам подходит только х=0,5 - скорость при подъеме, тогда 0,5+2=2,5 м/ч - скорость при спуске,
тогда 6/0,5=12 часов - время подъема
5/2,5=2 часа - время спуска
(x^2)^2-2*x^2*8+8^2+2+3.5x^2-28-2=0
x^4-16x^2+64+2+3.5x^2-30=0
x^4-12.5x^2+36=0
t=x^2
t^2-12.5t+36=0
D=(-12.5)^2-4*1*36=156.25-144=12.25
t1=12.5+3.5/2=16/2=8
t2=12.5-3.5/2=9/2=4.5
x^2=8 x^2=4.5
x1= x3= корень из 4.5
x2=- x4= минус корень из 4.5
2. (1+x^2)^2+0,5*(1+x^2)-5=0
1^2+2*1*x^2+(x^2)^2+0.5+0.5x^2-5=0
1+2x^2+x^4+0.5+0.5x^2-5=0
x^4+2.5x^2-3.5=0
t=x^2
t^2+2.5t-3.5=0
D=(2.5)^2-4*1*(-3.5)=6.25+14=20.25
t1=-2.5+4.5/2=1
t2=-2.5-4.5/2=-3.5
x=корень из 1 x= корень из - 3.5
x1=1
x2=-1