Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 34.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=34
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=34
2n+1+2n+5=34
4n=28
n=7
7; 8 и 9;10
(10²-9²)+(8²-7²)=19+15
34=34 - верно
Объяснение:
1) 8a - 12b = 4(2a - 3b)
2) 3a - ab = a(3 - b)
3) 6ax + 6ay = 6a(x + y)
4) 4a^2 + 8ac = 4a(a + 2c)
5) a^5 + a^2 = a^2*(a^3 + 1) = a^2*(a+1)(a^2 - a + 1)
6) 12x^2*y - 3xy = 3xy(4x - 1)
7) 21a^2*b + 28ab^2 = 7ab(3a + 4b)
8) -3x^6 + 12x^12 = 3x^6*(4x^6 - 1) = 3x^6*(2x^3 - 1)(2x^3 + 1)
Тут ещё можно разложить как сумму и разность кубов, но тогда появятся корни кубические из 2, так что лучше не надо.
Второе задание.
1) a(m+n) - b(m+n) = (m+n)(a-b)
2) x(2a-5b) + y(2a-5b) = (2a-5b)(x+y)
3) 2m(a-b) + 3n(b-a) = 2m(a-b) - 3n(a-b) = (a-b)(2m-3n)
4) 5x(b-c) - (c-b) = 5x(b-c) + (b-c) = (b-c)(5x+1)
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 34.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=34
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=34
2n+1+2n+5=34
4n=28
n=7
7; 8 и 9;10
(10²-9²)+(8²-7²)=19+15
34=34 - верно
Объяснение:
1) 8a - 12b = 4(2a - 3b)
2) 3a - ab = a(3 - b)
3) 6ax + 6ay = 6a(x + y)
4) 4a^2 + 8ac = 4a(a + 2c)
5) a^5 + a^2 = a^2*(a^3 + 1) = a^2*(a+1)(a^2 - a + 1)
6) 12x^2*y - 3xy = 3xy(4x - 1)
7) 21a^2*b + 28ab^2 = 7ab(3a + 4b)
8) -3x^6 + 12x^12 = 3x^6*(4x^6 - 1) = 3x^6*(2x^3 - 1)(2x^3 + 1)
Тут ещё можно разложить как сумму и разность кубов, но тогда появятся корни кубические из 2, так что лучше не надо.
Второе задание.
1) a(m+n) - b(m+n) = (m+n)(a-b)
2) x(2a-5b) + y(2a-5b) = (2a-5b)(x+y)
3) 2m(a-b) + 3n(b-a) = 2m(a-b) - 3n(a-b) = (a-b)(2m-3n)
4) 5x(b-c) - (c-b) = 5x(b-c) + (b-c) = (b-c)(5x+1)