Выразим через первое уравнение n = a+b-3 . Подставим это значение во второе уравнение 3(a+b-3)+1=ab .Раскроим скобки 3a+3b-9 + 1 = ab .Приведем подобные 3a+3b-8 = ab. Перенесем 3a в другую часть уравнение и вынесем a ,тогда 3b-8 = a(b-3) .Перенесем b-3 , (3b-8)/(b-3) = a .Разделим 3b-8 на b-3 (Как это делать показано во вложении получается 3 и остаток 1/b-3 .то есть 3+ 1/(b-3) = a . Перенесем 3 ,тогда 1/(b-3) = a-3 , перенесем b-3 ,тогда (b-3)(a-3) = 1. От a и b отнимается одно и тоже число (3) и их произведение равно 1 .При натуральных a и b это возможно только при b = a.
1) Раскрываем скобки
x^3 - 3*8x^2 + 3*8^2x - 8^3 + 24x^2 >= x^2 + 64x
x^3 + 192x - 512 >= x^2 + 64x
x^3 - x^2 + 128x - 512 >= 0
Обозначим левую часть f(x).
f(3) = 27 - 9 + 384 - 512 = 18 - 128 = - 110 < 0
f(4) = 64 - 16 + 512 - 512 = 48 > 0
Наименьшее целое, удовлетворяющее неравенству, равно 4.
2) Вы не дописали, это выражение равно - 36x^4
(x^3 - 9y^4)^2 - (x^3 + 9y^4)^2 + 36x^3*(y^4 - x) =
= (x^3-9y^4-x^3-9y^4) (x^3-9y^4+x^3+9y^4) + 36x^3*y^4 - 36x^4 =
= - 18y^4*2x^3 + 2*18x^3*y^4 - 36x^4 = - 36x^4
Доказано.
Выразим через первое уравнение n = a+b-3 . Подставим это значение во второе уравнение 3(a+b-3)+1=ab .Раскроим скобки 3a+3b-9 + 1 = ab .Приведем подобные 3a+3b-8 = ab. Перенесем 3a в другую часть уравнение и вынесем a ,тогда 3b-8 = a(b-3) .Перенесем b-3 , (3b-8)/(b-3) = a .Разделим 3b-8 на b-3 (Как это делать показано во вложении получается 3 и остаток 1/b-3 .то есть 3+ 1/(b-3) = a . Перенесем 3 ,тогда 1/(b-3) = a-3 , перенесем b-3 ,тогда (b-3)(a-3) = 1. От a и b отнимается одно и тоже число (3) и их произведение равно 1 .При натуральных a и b это возможно только при b = a.