Y = -x² + 4x + a Функция тогда принимает отрицательные значения, когда y(x) < 0. -x² + 4x + a < 0 x² - 4x - a > 0 x² - 4x + 4 - 4 - a > 0 (x - 2)² > 4 + a Графиком функции y = (x - 2)² является парабола, наименьшее её значение равно 0. Графиком функции y = 4 + a служит прямая, параллельная оси Ox, где a = const. Т.к. наименьшее значение функции y = (x - 2)² равно нулю, а прямая y = 4 + a пересекает параболу в точке (2; 0), причём a = -4, то при a < -4 неравенство (x - 2)² > 4 + a будет верно всегда P.s.: т.к. квадрат числа будет неотрицательным, то неравенство верно при 4 + a < 0, т.е. при a < -4. Наибольшим целым таким a будет являться число 5. ответ: при a = -5.
Функция тогда принимает отрицательные значения, когда y(x) < 0.
-x² + 4x + a < 0
x² - 4x - a > 0
x² - 4x + 4 - 4 - a > 0
(x - 2)² > 4 + a
Графиком функции y = (x - 2)² является парабола, наименьшее её значение равно 0.
Графиком функции y = 4 + a служит прямая, параллельная оси Ox, где a = const.
Т.к. наименьшее значение функции y = (x - 2)² равно нулю, а прямая y = 4 + a пересекает параболу в точке (2; 0), причём a = -4, то при a < -4 неравенство (x - 2)² > 4 + a будет верно всегда
P.s.: т.к. квадрат числа будет неотрицательным, то неравенство верно при 4 + a < 0, т.е. при a < -4.
Наибольшим целым таким a будет являться число 5.
ответ: при a = -5.
Обозначим недостающее число через x.
а) Среднее арифметическое данного ряда = 24:
(3+8+15+30+x+24)/6 = 24; 80 + x = 24*6;
80 + х = 144
х = 144 - 80
х = 64
Пропущено число 64.
б) Размах ряда - это разность между наибольшим и наименьшим значениями ряда.
Если в ряду содержатся только положительные числа, то пропущено наибольшее число, оно равно :
x-3 = 52;
x= 55.
Если в ряду могут быть отрицательные числа, то пропущено наименьшее число, оно равно 12:
64-x=52;
x = 64-52 = 12.
в) Мода ряда - это число, которое встречается наиболее часто. Так как мода = 8, то пропущено число 8.
Объяснение: