Решение: 1) ОДЗ для данной функции определено на всей числовой прямой (D(f) ∈ R) 2) Функция ни четна, ни нечетна 3) Точки пересечения с осью OX при x₁ = 0; x₂ = 3. Точки пересечения с осью OY в y = 0 4) (x-3)^2 в данной функции будет иметь постоянно положительный знак, т.к. оно находится под квадратом. Значит, знак всей функции зависит только от множителя x. Там, где x>0, функция положительна; соответственно, где x<0, там и y<0. 5) Мы нашли точки экстремума. Теперь найдем промежутки возрастания/убывания функции:
1) ОДЗ для данной функции определено на всей числовой прямой (D(f) ∈ R)
2) Функция ни четна, ни нечетна
3) Точки пересечения с осью OX при x₁ = 0; x₂ = 3.
Точки пересечения с осью OY в y = 0
4) (x-3)^2 в данной функции будет иметь постоянно положительный знак, т.к. оно находится под квадратом. Значит, знак всей функции зависит только от множителя x. Там, где x>0, функция положительна; соответственно, где x<0, там и y<0.
5)
Мы нашли точки экстремума. Теперь найдем промежутки возрастания/убывания функции:
+ - +
---------------------|-------------|------------------------>
1 3
Функция возрастает на промежутке: (-∞; 1] ∪ [3; +∞)
Функция убывает на промежутке: [1; 3]
Так как нет наибольших и наименьших значений у функции на всем промежутке, то область значений функции колеблется от (-∞; +∞).
График функции дан во вложениях.
ответы:
А1. 2) 13√3.
А2. 9;
А3. √8+√2;
А4. -10√ху;
А5. 3/(2+√х);
В1. 3(3х-5);
В2. 6 -20√5.
Объяснение:
А1. Упростите выражение:
√12 + 5√27 - √48=√4*3+5√9*3-√16*3=2√3+5*3√3-4√3=(2+15-4)√3=13√3.
***
А2. Найдите значение выражения
(√7 - √2 )(√7 - √2 ) + √56= √7√7-√7√2-√7√2+√2√2+=7-2√14+2-2√14=9-2√14+2√14=9;
***
А4. Упростите выражение:
(√5х -√5У) (√5х - √5У) – 5(х + У)= √5х√5х-√5х√5у-√5х√5у+√5у√5у-5х-5у= 5х-5√ху-5√ху+5у-5х-5у= -10√ху.
***
А5. Сократите дробь:
(6-3√Х)/(4- Х)=3(2-√х)/(2-√х)(2+√х)=3/(2+√х).
***
Дополнительная часть.
В1. Разложите на множители выражение:
9х – 15=3(3х-5).
***
В2. Выполните действия:
-√20 (√5 √( 20) ) + √12 ∙ √3= - (√20√5√20)+2√3√3= - 20√5+6 =6 -20√5