а) 5,5
б) 12,35
в) 11,5
г) 12,15
Объяснение:
a) Амплитуда (размах) — разность между наибольшим и наименьшим элементами
б) Медиана — полусумма средних элементов упорядоченной последовательности.
Данная последовательность состоит из 10 элементов (чётное количество), следовательно, средние элементы — пятый и шестой.
в) Мода — элемент, имеющий наибольшую частоту, т. е. 11,5 см
(встречается в таблице два раза).
г) Чтобы вычислить среднее арифметическое, необходимо сумму всех чисел разделить на их количество (на 10).
∠EFS = 180°,
FP - биссектриса ∠EFP,
1.
∠SFT = 3 * ∠EFT,
пусть
∠SFT = 3х,
∠EFT = х, тогда:
∠SFT + ∠EFT = 180°,
3х + х = 180,
4х = 180,
х = 45° - ∠EFT,
3х = 135° - ∠SFT,
2.
∠EFP = ∠TFP, так как FP - биссектриса,
∠TFP = 1/2 * ∠EFT = 1/2 * 45° = 22,5°,
3.
∠РFS = ∠TFP + ∠SFT = 22,5 + 135 = 157,5°
или:
∠РFS = ∠ЕFS - ∠ЕFP = 180 - 22,5 = 157,5°
а) 5,5
б) 12,35
в) 11,5
г) 12,15
Объяснение:
a) Амплитуда (размах) — разность между наибольшим и наименьшим элементами
б) Медиана — полусумма средних элементов упорядоченной последовательности.
Данная последовательность состоит из 10 элементов (чётное количество), следовательно, средние элементы — пятый и шестой.
в) Мода — элемент, имеющий наибольшую частоту, т. е. 11,5 см
(встречается в таблице два раза).
г) Чтобы вычислить среднее арифметическое, необходимо сумму всех чисел разделить на их количество (на 10).
∠EFS = 180°,
FP - биссектриса ∠EFP,
1.
∠SFT = 3 * ∠EFT,
пусть
∠SFT = 3х,
∠EFT = х, тогда:
∠SFT + ∠EFT = 180°,
3х + х = 180,
4х = 180,
х = 45° - ∠EFT,
3х = 135° - ∠SFT,
2.
∠EFP = ∠TFP, так как FP - биссектриса,
∠TFP = 1/2 * ∠EFT = 1/2 * 45° = 22,5°,
3.
∠РFS = ∠TFP + ∠SFT = 22,5 + 135 = 157,5°
или:
1.
∠SFT = 3 * ∠EFT,
пусть
∠SFT = 3х,
∠EFT = х, тогда:
∠SFT + ∠EFT = 180°,
3х + х = 180,
4х = 180,
х = 45° - ∠EFT,
3х = 135° - ∠SFT,
2.
∠EFP = ∠TFP, так как FP - биссектриса,
∠TFP = 1/2 * ∠EFT = 1/2 * 45° = 22,5°,
3.
∠РFS = ∠ЕFS - ∠ЕFP = 180 - 22,5 = 157,5°