В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С 4 4 4 5 5 5 4 4 5 4 5 5 5 5 4 5 4 4 4 5 4 5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б 3 3 4 4 5 5 3 4 4 3 4 5 5 4 3 5 5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу: - где a-число оценок, b-число учеников.
В итоге и получаем: 1 случай:
2 случай:
3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5). Отсюда:
Второй
Для первого ученика существует 4 варианта: 2,3,4,5 Для второго ученика существует 4 варианта на каждый вариант первого ученика. То есть: - варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика. То есть: - варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
1). 2·(2^х) ²+7·(2^х) -4=0; замена 2^х=а (→ а>0); 2а²+7а-4=0; D=49+32=81; а1,2=(-7±9)/4; а1=-4<0 нам не подходит; а2=2/4=1/2=2^(-1)=2^х ответ: х=-1
2). 5х²+4х-1=5(х-0,2)(х+1) D=16+20=36; х1,2=(-4±6)/10; х1=-1; х2=0,2 7х-2х=7(х-2/7) х-0,2 ___-___-1__-__0,2__+___2/7__+__ х+1 -__-1__+__0,2___+__2/7__+__ х-2/7 -__-1__-__0,2___-__2/7__+__ ответ: (-оо; -1)U(0,2; 2/7) это если строгое неравенство, то есть знак <
по твоей записи не поймешь если знак меньше или равно, то ответ (-оо; -1]U[0,2; 2/7)
3). у'=6х²-30х+24=6·(х²-5х+4)=6(х-1)(х-4) производная <0 на всем отрезке [2; 3] следовательно, на этом отрезке функция убывает следовательно, минимум в точке 2, максимум в точке 3 у min=подставляешь в у=2х³-15х²+24х+3 х=2 у max= подставляешь х=3
1 ученик - А
2 ученик - Б
Получаем:
А Б
4 5
5 4
5 5
4 4
В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С
4 4 4
5 5 5
4 4 5
4 5 5
5 5 4
5 4 4
4 5 4
5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б
3 3
4 4
5 5
3 4
4 3
4 5
5 4
3 5
5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу:
- где a-число оценок, b-число учеников.
В итоге и получаем:
1 случай:
2 случай:
3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
Второй
Для первого ученика существует 4 варианта:
2,3,4,5
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
- варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
- варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
- вариантов событий.
2а²+7а-4=0; D=49+32=81; а1,2=(-7±9)/4; а1=-4<0 нам не подходит;
а2=2/4=1/2=2^(-1)=2^х ответ: х=-1
2). 5х²+4х-1=5(х-0,2)(х+1)
D=16+20=36; х1,2=(-4±6)/10; х1=-1; х2=0,2
7х-2х=7(х-2/7)
х-0,2 ___-___-1__-__0,2__+___2/7__+__
х+1 -__-1__+__0,2___+__2/7__+__
х-2/7 -__-1__-__0,2___-__2/7__+__
ответ: (-оо; -1)U(0,2; 2/7) это если строгое неравенство, то есть знак <
по твоей записи не поймешь
если знак меньше или равно, то ответ (-оо; -1]U[0,2; 2/7)
3).
у'=6х²-30х+24=6·(х²-5х+4)=6(х-1)(х-4)
производная <0 на всем отрезке [2; 3] следовательно,
на этом отрезке функция убывает
следовательно, минимум в точке 2, максимум в точке 3
у min=подставляешь в у=2х³-15х²+24х+3
х=2
у max= подставляешь х=3