В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Dawy01
Dawy01
05.11.2021 22:17 •  Алгебра

Решить неравенства: 1) 3/x-1< 1-x 2)log(3основание)(3x+1)< 2 3)sgrt(x-3)/x-4< 1

Показать ответ
Ответ:
АнькаЦитрус
АнькаЦитрус
24.05.2020 15:50

1) 3/(x-1) < (1-x)

ОДЗ: х - 1 ≠ 0     ⇒    х ≠ 1

3 < -x² + 2х -1

-x² + 2х -1 - 3 > 0

-x² + 2х - 4 > 0

Найдём нули функции  у = -x² + 2х - 4

-x² + 2х - 4 = 0

D = 4 - 16 = -12 (решений нет)

График функции   у = -x² + 2х - 4 - квадратная парабола веточками вниз. Поскольку она не пересекает ось х, то все значения этой функции отрицательны, и неравенство -x² + 2х - 4 > 0 решений не имеет. Поэтому и исходное неравенство  3/(x-1) < (1-x) решений не имеет.

 

2) log₃(3x+1)< 2

    log₃(3x+1)< log₃9

ОДЗ: 3x+1 > 0   ⇒ 3x > -1  ⇒  х > -1/3

Поскольку основание логарифма 3 > 1, то между числами такое же соотношение, как и между логарифмами:

3x+1 < 9

3х < 8

х < 8/3

Сопоставляя решение х < 8/3 с ОДЗ, делаем вывод, что решением неравенства

является интервал: х∈ (-1/3 ; 8/3)

 

3)√(x-3)/(x-4) < 1

ОДЗ: а) х - 3 ≥ 0  ⇒ х ≥ 3   б) x - 4 ≠ 0   ⇒  х ≠ 4

таким образом ОДЗ: х∉ [3; 4) и (4; +∞)

а) при х ∉ [3; 4) (x-4)<0, поэтому

√(x-3) > (x-4)

x-3 > х² - 8х + 16

х² - 9х + 19 < 0

х² - 9х + 19= 0

D = 81 - 76 = 5

x₁ = (9 - √5)/2 ≈ 3,38

x₂ = (9 + √5)/2 = 5,62

Неравенство х² - 9х + 19 < 0 верно при х∈(3,38; 5,62)

Но поскольку мы рассматривали (x-4)<0, решением исходного неравенства √(x-3)/(x-4) < 1 будет только область

х∉ [3; 3,38) или, точнее х∉ [3; (9 - √5)/2)

б) при х ∉ (4; +∞) (x-4)> 0, поэтому

√(x-3) < (x-4)

x-3 < х² - 8х + 16

х² - 9х + 19 > 0

х² - 9х + 19= 0

D = 81 - 76 = 5

x₁ = (9 - √5)/2 ≈ 3,38

x₂ = (9 + √5)/2 = 5,62

Неравенство х² - 9х + 19 > 0 верно при х∈(-∞; 3,38) и ( 5,62; +∞)

Но поскольку мы рассматривали (x-4)>0, решением исходного неравенства √(x-3)/(x-4) < 1 будет только область

х∉ (5,62; +∞) или, точнее х∈ ((9 + √5)/2; +∞)

ответ: х∉ [3; (9 - √5)/2) и ((9 + √5)/2; +∞)

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота