В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
kcatuscha2016
kcatuscha2016
25.11.2021 19:17 •  Алгебра

Решить неравенство 3log_x-3(6-x)+1< =1/4log^2_x-3(x^2-9x+18)^2

Показать ответ
Ответ:
syropyatovkoce
syropyatovkoce
05.10.2020 17:04
ОДЗ:
x<6, x>3, x≠4

3log_{x-3}(6-x)+1\leq{1\over4}log^2_{x-3}(x^2-9x+18)^2\\3log_{x-3}(6-x)+1\leq log^2_{x-3}(6-x)(x-3)\\log_{x-3}(6-x)=t\\3t+1\leq(t+1)^2\\t^2-t\geq0\\t\in(-\infty;0]\cup[1;+\infty)\\\\log_{x-3}(6-x)\in(-\infty;0]\cup[1;+\infty)

Возможны 2 случая в зависимости от того, больше основание логарифма, чем 1 или меньше:
1)x-3\ \textgreater \ 1\\\\6-x\leq1\\\cup\\6-x\geq x-3\\\\x\in(4;4.5]\cup[5;+\infty)\\\\2)x-3\ \textless \ 1\\\\6-x\geq1\\\cup\\6-x\leq x-3\\\\x\in(-\infty;4)]\\\\

Объединяем и пересекаем с ОДЗ:
x\in(3;4)\cup(4;4.5]\cup[5;6)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота