Решить . один штукатур может выполнить на 5 часов быстрее другого. вместе они выполнят это за 6 часов. за сколько часов каждый из них выполнит ? заранее .
Обозначим все задание S скорость первого штукатура х чего-то там в час (нам не важно в чем они там измеряют свою работу) скорость второго у тогда первый выполнит всю работу за S/x часов, а второй - за S/y часов по условию S/y-S/x=5 кроме того S/(x+y)=6 получили систему из двух уравнений с тремя неизвестными. В общем виде она не решается, но нам надо найти только S/x и S/у - это нам вполне по силам))
Рассмотрим отдельно второе уравнение S/(x+y)=6 S=6(x+y) разделим его на S 1=6x/S+6y/S
обозначим S/x=a и S/y=b (а и b -это как раз время за котторое каждый штукатур выполнит задание!). Тогда первое уравнение b-a=5, а второе 6/a+6/b=1 теперь это система из двух уравнений с двумя неизвестными
b=5+a 6(b+a)/ab=1 6(a+b)=ab 6(a+5+a)=a(5+a) 12a+30=5a+a² a²-7a-30=0 D=7²+4*30=49+120=169 √D=13 a₁=(7-13)/2=-3 отбрасываем отрицательное значение a₂=(7+13)/2=10 a=10 b=5+a=15 ответ: 10 и 15 часов
скорость первого штукатура х чего-то там в час (нам не важно в чем они там измеряют свою работу)
скорость второго у
тогда первый выполнит всю работу за S/x часов, а второй - за S/y часов
по условию S/y-S/x=5
кроме того S/(x+y)=6
получили систему из двух уравнений с тремя неизвестными. В общем виде она не решается, но нам надо найти только S/x и S/у - это нам вполне по силам))
Рассмотрим отдельно второе уравнение
S/(x+y)=6
S=6(x+y) разделим его на S
1=6x/S+6y/S
обозначим S/x=a и S/y=b (а и b -это как раз время за котторое каждый штукатур выполнит задание!). Тогда первое уравнение b-a=5, а второе 6/a+6/b=1
теперь это система из двух уравнений с двумя неизвестными
b=5+a
6(b+a)/ab=1 6(a+b)=ab
6(a+5+a)=a(5+a)
12a+30=5a+a²
a²-7a-30=0
D=7²+4*30=49+120=169
√D=13
a₁=(7-13)/2=-3 отбрасываем отрицательное значение
a₂=(7+13)/2=10
a=10
b=5+a=15
ответ: 10 и 15 часов